Skip to main content

Retromer and Its Role in Regulating Signaling at Endosomes

  • Chapter
  • First Online:
Endocytosis and Signaling

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 57))

Abstract

The retromer complex is a key element of the endosomal protein sorting machinery being involved in trafficking of proteins from endosomes to the Golgi and also endosomes to the cell surface. There is now accumulating evidence that retromer also has a prominent role in regulating the activity of many diverse signaling proteins that traffic through endosomes and this activity has profound implications for the functioning of many different cell and tissue types from neuronal cells to cells of the immune system to specialized polarized epithelial cells of the retina. In this review, the protein composition of the retromer complex will be described along with many of the accessory factors that facilitate retromer-mediated endosomal protein sorting to detail how retromer activity contributes to the regulation of several distinct signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS (2004) Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165(1):123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry L, Klein G (2013) True arrestins and arrestin-fold proteins: a structure-based appraisal. Prog Mol Biol Transl Sci. 118:21–56

    Article  CAS  PubMed  Google Scholar 

  • Balana B, Bahima L, Bodhinathan K, Taura JJ, Taylor NM, Nettleton MY, Ciruela F, Slesinger PA (2013) Ras-association domain of sorting Nexin 27 is critical for regulating expression of GIRK potassium channels. PLoS ONE 8(3):e59800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X (2008) The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev Cell 14(1):120–131

    Article  CAS  PubMed  Google Scholar 

  • Burden JJ, Sun XM, García AB, Soutar AK (2004) Sorting motifs in the intracellular domain of the low density lipoprotein receptor interact with a novel domain of sorting nexin-17. J Biol Chem 279(16):16237–16245

    Article  CAS  PubMed  Google Scholar 

  • Carlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ (2004) Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol 14(20):1791–800

    Google Scholar 

  • Chan AS, Clairfeuille T, Landao-Bassonga E, Kinna G, Ng PY, Loo LS, Cheng TS, Zheng M, Hong W, Teasdale RD, Collins BM, Pavlos NJ. (2016) Sorting nexin 27 couples PTHR trafficking to retromer for signal regulation in osteoblasts during bone growth. Mol Biol Cell 27(8):1367–82

    Google Scholar 

  • Chmiest D, Sharma N, Zanin N, Viaris de Lesegno C, Shafaq-Zadah M, Sibut V, Dingli F, Hupé P, Wilmes S, Piehler J, Loew D, Johannes L, Schreiber G, Lamaze C (2016) Spatiotemporal control of interferon-induced JAK/STAT signaling and gene transcription by the retromer complex. Nat Commun 7:13476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy RW, Park M, Temkin P, Herring BE, Marley A, Nicoll RA, von Zastrow M (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. Neuron 82(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins BM, Norwood SJ, Kerr MC, Mahony D, Seaman MN, Teasdale RD, Owen DJ (2008) Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9(3):366–379

    Article  CAS  PubMed  Google Scholar 

  • Damseh N, Danson CM, Al-Ashhab M, Abu-Libdeh B, Gallon M, Sharma K, Yaacov B, Coulthard E, Caldwell MA, Edvardson S, Cullen PJ, Elpeleg O (2015) A defect in the retromer accessory protein, SNX27, manifests by infantile myoclonic epilepsy and neurodegeneration. Neurogenetics 16(3):215–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A (2009) The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell 17(5):712–723

    Article  CAS  PubMed  Google Scholar 

  • Feinstein TN, Wehbi VL, Ardura JA, Wheeler DS, Ferrandon S, Gardella TJ, Vilardaga JP (2011) Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol 7(5):278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent JP (2008) Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nat Cell Biol 10(2):170–177

    Article  CAS  PubMed  Google Scholar 

  • Freeman CL, Hesketh G, Seaman MN (2014) RME-8 coordinates the activity of the WASH complex with the function of the retromer SNX dimer to control endosomal tubulation. J Cell Sci 127(Pt 9):2053–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallon M, Clairfeuille T, Steinberg F, Mas C, Ghai R, Sessions RB, Teasdale RD, Collins BM, Cullen PJ (2014) A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc Natl Acad Sci U S A 111(35):E3604–E3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghai R, Mobli M, Norwood SJ, Bugarcic A, Teasdale RD, King GF, Collins BM (2011) Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases. Proc Natl Acad Sci U S A 108(19):7763–7768

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2014) Overview of different mechanisms of arrestin-mediated signaling. Curr Protoc Pharmacol 1:67

    Google Scholar 

  • Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI (2000) Human orthologs of yeast vacuolar protein sorting proteins Vps 26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 11(12):4105–4116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harbour ME, Breusegem SY, Seaman MN (2012) Recruitment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem J 442(1):209–220

    Article  CAS  PubMed  Google Scholar 

  • Harbour ME, Seaman MN (2011) Evolutionary variations of VPS29, and their implications for the heteropentameric model of retromer. Commun Integr Biol 4(5):619–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JR, van Heesbeen RG, Middelkoop TC, Basler K, Cullen PJ, Korswagen HC (2011) A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 13(8):914–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfer E, Harbour ME, Henriot V, Lakisic G, Sousa-Blin C, Volceanov L, Seaman MN, Gautreau A (2013) Endosomal recruitment of the WASH complex: active sequences and mutations impairing interaction with the retromer. Biol Cell 105(5):191–207

    Article  CAS  PubMed  Google Scholar 

  • Herrero A, Matallanas D, Kolch W (2016) The spatiotemporal regulation of RAS signaling. Biochem Soc Trans 44(5):1517–1522

    Article  CAS  Google Scholar 

  • Horazdovsky BF, Davies B, Seaman MNJ, McLauglin SA, Yoon S-K, Emr SD (1997) A Yeast homolog of Snx1, Vps5p forms a membrane associated complex with Vps17p and is required for recycling of the vacuolar sorting receptor, Vps10p. Mol Biol Cell 8:1529–1541

    Google Scholar 

  • Hussain NK, Diering GH, Sole J, Anggono V, Huganir RL (2014) Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs. Proc Natl Acad Sci U S A 111(32):11840–11845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia D, Gomez TS, Billadeau DD, Rosen MK (2012) Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell 23(12):2352–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Chang J, Blackstone C (2016) FAM21 directs SNX27-retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus. Nat Commun 9(7):10939

    Article  CAS  Google Scholar 

  • Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W (2014) A role for sorting nexin 27 in AMPA receptor trafficking. Nat Commun 5:3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn ML, Nassirpour R, Arrabit C, Tan J, McLeod I, Arias CM, Sawchenko PE, Yates JR 3rd, Slesinger PA (2007) A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat Neurosci 10(10):1249–1259

    Article  CAS  PubMed  Google Scholar 

  • McGarvey JC, Xiao K, Bowman SL, Mamonova T, Zhang Q, Bisello A, Sneddon WB, Ardura JA, Jean-Alphonse F, Vilardaga JP, Puthenveedu MA, Friedman PA (2016) Actin-Sorting Nexin 27 (SNX27)-retromer complex mediates rapid parathyroid hormone receptor recycling. J Biol Chem 291(21):10986–101002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, Whone AL, Caldwell MA, Billadeau DD, Rosen MK, Cullen PJ (2014) Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620 N) mutation. Curr Biol 24(14):1670–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munsie LN, Milnerwood AJ, Seibler P, Beccano-Kelly DA, Tatarnikov I, Khinda J, Volta M, Kadgien C, Cao LP, Tapia L, Klein C, Farrer MJ (2015) Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p. D620N. Hum Mol Genet 24(6):1691–1703

    Article  CAS  PubMed  Google Scholar 

  • Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G (2008) C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Dev Cell 14(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K (2008) Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat Cell Biol 10(2):178–185

    Article  CAS  PubMed  Google Scholar 

  • Schuh AL, Audhya A (2014) The ESCRT machinery: from the plasma membrane to endosomes and back again. Crit Rev Biochem Mol Biol. 49(3):242–261

    Google Scholar 

  • Seaman MN (2004) Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 165(1):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman MN (2012) The retromer complex—endosomal protein recycling and beyond. J Cell Sci 125(Pt 20):4693–4702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman MN, Gautreau A, Billadeau DD (2013) Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol 23(11):522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman MN, Marcusson EG, Cereghino JL, Emr SD (1997) Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 137(1):79–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142(3):665–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Rojas R, Bonifacino JS, Hurley JH (2006) The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat Struct Mol Biol 13(6):540–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavaré JM, Cullen PJ (2013) A global analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion transport. Nat Cell Biol 15(5):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strochlic TI, Setty TG, Sitaram A, Burd CG (2007) Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 177(1):115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarbrick JD, Shaw DJ, Chhabra S, Ghai R, Valkov E, Norwood SJ, Seaman MN, Collins BM (2011) VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS ONE 6(5):e20420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M (2011) SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signaling receptors. Nat Cell Biol 13(6):715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Tang FL, Sun X, Wen L, Mei L, Tang BS, Xiong WC (2015) VPS35-deficiency results in an impaired AMPA receptor trafficking and decreased dendritic spine maturation. Mol Brain 8(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Weering JR, Cullen PJ (2014) Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 31:40–47

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Tan KL, Agosto MA, Xiong B, Yamamoto S, Sandoval H, Jaiswal M, Bayat V, Zhang K, Charng WL, David G, Duraine L, Venkatachalam K, Wensel TG, Bellen HJ (2014) The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration. PLoS Biol 12(4):e1001847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhao Y, Zhang X, Badie H, Zhou Y, Mu Y, Loo LS, Cai L, Thompson RC, Yang B, Chen Y, Johnson PF, Wu C, Bu G, Mobley WC, Zhang D, Gage FH, Ranscht B, Zhang YW, Lipton SA, Hong W, Xu H (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down’s syndrome. Nat Med 19(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia WF, Tang FL, Xiong L, Xiong S, Jung JU, Lee DH, Li XS, Feng X, Mei L, Xiong WC (2013) Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling. J Cell Biol 200(6):821–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC (2008) Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Dev Cell 14(1):140–147

    Article  CAS  PubMed  Google Scholar 

  • Zavodszky E, Seaman MN, Moreau K, Jimenez-Sanchez M, Breusegem SY, Harbour ME, Rubinsztein DC (2014) Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun 5:3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Wu Y, Belenkaya TY, Lin X (2011) SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 21(12):1677–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Wiener H, Su W, Zhou Y, Liot C, Ahearn I, Hancock JF, Philips MR (2016) VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking. J Cell Biol 214(4):445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I would like to thank Aamir Mukadam for critical reading of the manuscript. MNJS is funded by the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew N. J. Seaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seaman, M.N.J. (2018). Retromer and Its Role in Regulating Signaling at Endosomes. In: Lamaze, C., Prior, I. (eds) Endocytosis and Signaling. Progress in Molecular and Subcellular Biology, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-96704-2_5

Download citation

Publish with us

Policies and ethics