Skip to main content

Regulation of KSHV Lytic Gene Expression

  • Chapter
Kaposi Sarcoma Herpesvirus: New Perspectives

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 312))

Abstract

The life cycle of KSHV, latency versus lytic replication, is mainly determined at the transcriptional regulation level. A viral immediate-early gene product, replication and transcription activator (RTA), has been identified as the molecular switch for initiation of the lytic gene expression program from latency. Here we review progress on two key questions: how RTA gene expression is controlled by viral proteins and cellular signals and how RTA regulates the expression of downstream viral genes. We summarize the interactions of RTA with cellular and other viral proteins. We also discuss critical issues that must be addressed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An FQ, Compitello N, Horwitz E, Sramkoski M, Knudsen ES, Renne R (2005) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus modulates cellular gene expression and protects lymphoid cells from p 16 INK4A-induced cell cycle arrest. J Biol Chem 280:3862–3874

    Article  PubMed  CAS  Google Scholar 

  • An J, Sun Y, Sun R, Rettig MB (2003) Kaposi’s sarcoma-associated herpesvirus encoded vFLIP induces cellular IL-6 expression: the role of the NF-κB and JNK/AP1 pathways. Oncogene 22:3371–3385

    Article  PubMed  CAS  Google Scholar 

  • Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, Cesarman E (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88:2648–2654

    PubMed  CAS  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284:641–644

    Article  PubMed  CAS  Google Scholar 

  • Bechtel JT, Winant RC, Ganem D (2005) Host and viral proteins in the virion of Kaposi’s sarcoma-associated herpes virus. J Virol 79:4952–4964

    Article  PubMed  CAS  Google Scholar 

  • Boname JM, Coleman HM, May JS, Stevenson PG (2004) Protection against wild-type murine gamma herpesvirus-68 latency by a latency-deficient mutant. J Gen Virol 85:131–135

    Article  PubMed  CAS  Google Scholar 

  • Boshoff C, Gao SJ, Healy LE, Matthews S, Thomas AJ, Coignet L, Warnke RA, Strauchen JA, Matutes E, Kamel OW, Moore PS, Weiss RA, Chang Y (1998) Establishing a KSHV+ cell line (BCP-1) from peripheral blood and characterizing its growth in Nod/SCID mice. Blood 91:1671–1679

    PubMed  CAS  Google Scholar 

  • Brown HJ, McBride WH, Zack JA, Sun R (2005) Prostratin and bortezomib are novel inducers of latent Kaposi’s sarcoma-associated herpesvirus. Antivir Ther 10:745–751

    PubMed  CAS  Google Scholar 

  • Brown HJ, Song MJ, Deng H, Wu TT, Cheng G, Sun R (2003) NF-κB inhibits gamma herpesvirus lytic replication. J Virol 77:8532–8540

    Article  PubMed  CAS  Google Scholar 

  • Cannon M, Cesarman E, Boshoff C (2006) KSHV G protein-coupled receptor inhibits lytic gene transcription in primary-effusion lymphoma cells via p21-mediated inhibition of Cdk2. Blood 107:277–284

    Article  PubMed  CAS  Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  CAS  Google Scholar 

  • Cesarman E, Chang Y, Moore PS, Said JW, Knowles DM (1995a) Kaposi’s sarcoma associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332:1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y (1995b) In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood 86: 2708–2714

    PubMed  CAS  Google Scholar 

  • Chang H, Dittmer DP, Chul SY, Hong Y, Jung JU (2005a) Role of Notch signal transduction in Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 79:14371–14382

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Renne R, Dittmer D, Ganem D (2000) Inflammatory cytokines and the reactivation of Kaposi’s sarcoma-associated herpesvirus lytic replication. Virology 266:17–25

    Article  PubMed  CAS  Google Scholar 

  • Chang M, Brown HJ, Collado-Hidalgo A, Arevalo JM, Galic Z, Symensma TL, Tanaka L, Deng H, Zack JA, Sun R, Cole SW (2005b) β-Adrenoreceptors reactivate Kaposi’s sarcoma-associated herpesvirus lytic replication via PKA-dependent control of viral RTA. J Virol 79:13538–13547

    Article  PubMed  CAS  Google Scholar 

  • Chang PJ, Miller G (2004) Autoregulation of DNA binding and protein stability of Kaposi’s sarcoma-associated herpesvirus ORF50 protein. J Virol 78:10657–10673

    Article  PubMed  CAS  Google Scholar 

  • Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G (2002) Open reading frame 50 protein of Kaposi’s sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 76:3168–3178

    Article  PubMed  CAS  Google Scholar 

  • Chang PJ, Shedd D, Miller G (2005c) Two subclasses of Kaposi’s sarcoma-associated herpesvirus lytic cycle promoters distinguished by open reading frame 50 mutant proteins that are deficient in binding to DNA. J Virol 79:8750–8763

    Article  PubMed  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266:1865–1869

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M, Yamanishi K (2001) Activation of latent Kaposi’s sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA 98:4119–4124

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Ueda K, Sakakibara S, Okuno T, Yamanishi K (2000) Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus viral interferon regulatory factor gene. J Virol 74:8623–8634

    Article  PubMed  CAS  Google Scholar 

  • Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM, Alcendor DJ, Zong JC, Ambinder RF, Hayward GS (2002) Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi’s sarcoma-associated herpesvirus. J Virol 76:3421–3439

    Article  PubMed  CAS  Google Scholar 

  • Cousens LS, Gallwitz D, Alberts BM (1979) Different accessibilities in chromatin to histone acetylase. J Biol Chem 254:1716–1723

    PubMed  CAS  Google Scholar 

  • Curreli F, Cerimele F, Muralidhar S, Rosenthal LJ, Cesarman E, Friedman-Kien AE, Flore O (2002) Transcriptional downregulation of ORF50/Rta by methotrexate inhibits the switch of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 from latency to lytic replication. J Virol 76:5208–5219

    Article  PubMed  CAS  Google Scholar 

  • Curreli F, Friedman-Kien AE, Flore O (2005) Glycyrrhizic acid alters Kaposi sarcoma-associated herpesvirus latency, triggering p53-mediated apoptosis in transformed B lymphocytes. J Clin Invest 115:642–652

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Chu JT, Rettig MB, Martinez-Maza O, Sun R (2002a) Rta of the human herpesvirus 8/Kaposi sarcoma-associated herpesvirus up-regulates human interleukin-6 gene expression. Blood 100:1919–1921

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Song MJ, Chu JT, Sun R (2002b) Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 76:8252–8264

    Article  PubMed  CAS  Google Scholar 

  • Deng H, Young A, Sun R (2000) Auto-activation of the rta gene of human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus. J Gen Virol 81:3043–3048

    PubMed  CAS  Google Scholar 

  • Deutsch E, Cohen A, Kazimirsky G, Dovrat S, Rubinfeld H, Brodie C, Sarid R (2004) Role of protein kinase Cδin reactivation of Kaposi’s sarcoma-associated herpesvirus. J Virol 78:10187–10192

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Wang S, Liu S, Wood C (2001) Characterization of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 ORF57 promoter. Arch Virol 146:403–413

    Article  PubMed  CAS  Google Scholar 

  • Fejer G, Medveczky MM, Horvath E, Lane B, Chang Y, Medveczky PG (2003) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus interacts preferentially with the terminal repeats of the genome in vivo and this complex is sufficient for episomal DNA replication. J Gen Virol 84:1451–1462

    Article  PubMed  CAS  Google Scholar 

  • Friborg J, Jr., Kong W, Hottiger MO, Nabel GJ (1999) p53 inhibition by the LANA protein of KSHV protects against cell death. Nature 402:889–894

    PubMed  CAS  Google Scholar 

  • Fujimuro M, Hayward SD (2003) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus manipulates the activity of glycogen synthase kinase-3beta. J Virol 77:8019–8030

    Article  PubMed  CAS  Google Scholar 

  • Gao SJ, Deng JH, Zhou FC (2003) Productive lytic replication of a recombinant Kaposi’s sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J Virol 77:9738–9749

    Article  PubMed  CAS  Google Scholar 

  • Gradoville L, Gerlach J, Grogan E, Shedd D, Nikiforow S, Metroka C, Miller G (2000) Kaposi’s sarcoma-associated herpesvirus open reading frame 50/Rta protein activates the entire viral lytic cycle in the HH-B2 primary effusion lymphoma cell line. J Virol 74:6207–6212

    Article  PubMed  CAS  Google Scholar 

  • Grundhoff A, Ganem D (2003) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus permits replication of terminal repeat-containing plasmids. J Virol 77:2779–2783

    Article  PubMed  CAS  Google Scholar 

  • Guasparri I, Keller SA, Cesarman E (2004) KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med 199:993–1003

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Hwang S, Lim C, Won YS, Lee CH, Choe J (2002) Kaposi’s Sarcoma-associated herpesvirus open reading frame 50 stimulates the transcriptional activity of STAT3. J Biol Chem 277:6438–6442

    Article  PubMed  CAS  Google Scholar 

  • Gwack Y, Nakamura H, Lee SH, Souvlis J, Yustein JT, Gygi S, Kung HJ, Jung JU (2003) Poly(ADP-ribose) polymerase 1 and Ste20-like kinase hKFC act as transcriptional repressors for gamma-2 herpesvirus lytic replication. Mol Cell Biol 23:8282–8294

    Article  PubMed  CAS  Google Scholar 

  • Haque M, Chen J, Ueda K, Mori Y, Nakano K, Hirata Y, Kanamori S, Uchiyama Y, Inagi R, Okuno T, Yamanishi K (2000) Identification and analysis of the K5 gene of Kaposi’s sarcoma-associated herpesvirus. J Virol 74:2867–2875

    Article  PubMed  CAS  Google Scholar 

  • Haque M, Davis DA, Wang V, Widmer I, Yarchoan R (2003) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) contains hypoxia response elements: relevance to lytic induction by hypoxia. J Virol 77:6761–6768

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Garber AC, Renne R (2002) The latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J Virol 76:11677–11687

    Article  PubMed  CAS  Google Scholar 

  • Izumiya Y, Ellison TJ, Yeh ET, Jung JU, Luciw PA, Kung HJ (2005) Kaposi’s sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 79:9912–9925

    Article  PubMed  CAS  Google Scholar 

  • Jenner RG, Alba MM, Boshoff C, Kellam P (2001) Kaposi’s sarcoma-associated herpesvirus latent andlytic gene expression as revealed by DNA arrays. J Virol 75:891–902

    Article  PubMed  CAS  Google Scholar 

  • Jeong J, Papin J, Dittmer D (2001) Differential regulation of the overlapping Kaposi’s sarcoma-associated herpesvirus vGCR (orf74) and LANA (orf73) promoters. J Virol 75:1798–1807

    Article  PubMed  CAS  Google Scholar 

  • Johnson AS, Maronian N, Vieira J (2005) Activation of Kaposi’s sarcoma-associated herpesvirus lytic gene expression during epithelial differentiation. J Virol 79:13769–13777

    Article  PubMed  CAS  Google Scholar 

  • Kirshner JR, Lukac DM, Chang J, Ganem D (2000) Kaposi’s sarcoma-associated herpesvirus open reading frame 57 encodes a posttranscriptional regulator with multiple distinct activities. J Virol 74:3586–3597

    Article  PubMed  CAS  Google Scholar 

  • Kirshner JR, Staskus K, Haase A, Lagunoff M, Ganem D (1999) Expression of the open reading frame 74 (G-protein-coupled receptor) gene of Kaposi’s sarcoma (KS)-associated herpesvirus: implications for KS pathogenesis. J Virol 73:6006–6014

    PubMed  CAS  Google Scholar 

  • Kliche S, Nagel W, Kremmer E, Atzler C, Ege A, Knorr T, Koszinowski U, Kolanus W, Haas J (2001) Signaling by human herpesvirus 8 kaposin A through direct membrane recruitment of cytohesin-1. Mol Cell 7:833–843

    Article  PubMed  CAS  Google Scholar 

  • Knowles DM, Cesarman E (1997) The Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) in Kaposi’s sarcoma, malignant lymphoma, and other diseases. Ann Oncol 8Suppl 2:123–129

    Article  PubMed  Google Scholar 

  • Krishnan HH, Naranatt PP, Smith MS, Zeng L, Bloomer C, Chandran B (2004) Concurrent expression of latent and a limited number of lytic genes with immune modulation and antiapoptotic function by Kaposi’s sarcoma-associated herpesvirus early during infection of primary endothelial and fibroblast cells and subsequent decline of lytic gene expression. J Virol 78:3601–3620

    Article  PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Robertson ES (2005) Kaposi’s sarcoma-associated herpesvirus reactivation is regulated by interaction of latency-associated nuclear antigen with recombination signal sequence-binding protein Jκ, the major downstream effector of the Notch signaling pathway. J Virol 79:3468–3478

    Article  PubMed  CAS  Google Scholar 

  • Lan K, Kuppers DA, Verma SC, Robertson ES (2004) Kaposi’s sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta: a potential mechanism for virus-mediated control of latency. J Virol 78:6585–6594

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Chang J, Lynch SJ, Lukac DM, Ganem D (2002) The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jκ (CSL), the target of the Notch signaling pathway. Genes Dev 16:1977–1989

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2003) Lytic but not latent infection by Kaposi’s sarcoma-associated herpesvirus requires host CSL protein, the mediator of Notch signaling. Proc Natl Acad Sci USA 100:8490–8495

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Ganem D (2004) RBP-J (CSL) is essential for activation of the K14/vGPCR promoter of Kaposi’s sarcoma-associated herpesvirus by the lytic switch protein RTA. J Virol 78:6818–6826

    Article  PubMed  CAS  Google Scholar 

  • Lin CL, Li H, Wang Y, Zhu FX, Kudchodkar S, Yuan Y (2003) Kaposi’s sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: identification of the ori-Lyt and association of K8 bZip protein with the origin. J Virol 77:5578–5588

    Article  PubMed  CAS  Google Scholar 

  • Lin SF, Robinson DR, Miller G, Kung HJ (1999) Kaposi’s sarcoma-associated herpesvirus encodes a bZIP protein with homology to BZLF1 of Epstein-Barr virus. J Virol 73:1909–1917

    PubMed  CAS  Google Scholar 

  • Longworth MS, Laimins LA (2004) Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev 68:362–372

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Day L, Lieberman PM (2005) Kaposi’s sarcoma-associated herpesvirus virioninduced transcription activation of the ORF50 immediate-early promoter. J Virol 79:13180–13185

    Article  PubMed  CAS  Google Scholar 

  • Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM (2003) Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol 77:11425–11435

    Article  PubMed  CAS  Google Scholar 

  • Lukac DM, Garibyan L, Kirshner JR, Palmeri D, Ganem D (2001) DNA binding by Kaposi’s sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. J Virol 75:6786–6799

    Article  PubMed  CAS  Google Scholar 

  • Lukac DM, Kirshner JR, Ganem D (1999) Transcriptional activation by the product of open reading frame 50 of Kaposi’s sarcoma-associated herpesvirus is required for lytic viral reactivation in B cells. J Virol 73:9348–9361

    PubMed  CAS  Google Scholar 

  • Lukac DM, Renne R, Kirshner JR, Ganem D (1998) Reactivation of Kaposi’s sarcoma-associated herpesvirus infection from latency by expression of the ORF 50 transactivator, a homolog of the EBV R protein. Virology 252:304–312

    Article  PubMed  CAS  Google Scholar 

  • Malik P, Blackbourn DJ, Cheng MF, Hayward GS, Clements JB (2004) Functional co-operation between the Kaposi’s sarcoma-associated herpesvirus ORF57 and ORF50 regulatory proteins. J Gen Virol 85:2155–2166

    Article  PubMed  CAS  Google Scholar 

  • Matsumura S, Fujita Y, Gomez E, Tanese N, Wilson AC (2005) Activation of the Kaposi’s sarcoma-associated herpesvirus major latency locus by the lytic switch protein RTA (ORF50). J Virol 79:8493–8505

    Article  PubMed  CAS  Google Scholar 

  • McCormick C, Ganem D (2005) The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:739–741

    Article  PubMed  CAS  Google Scholar 

  • Mercader M, Taddeo B, Panella JR, Chandran B, Nickoloff BJ, Foreman KE (2000) Induction of HHV-8 lytic cycle replication by inflammatory cytokines produced by HIV-1-infected T cells. Am J Pathol 156:1961–1971

    PubMed  CAS  Google Scholar 

  • Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y (1997) Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol 71:314–324

    PubMed  CAS  Google Scholar 

  • Miller G, Rigsby MO, Heston L, Grogan E, Sun R, Metroka C, Levy JA, Gao SJ, Chang Y, Moore P (1996) Antibodies to butyrate-inducible antigens of Kaposi’s sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med 334:1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Molden J, Chang Y, You Y, Moore PS, Goldsmith MA (1997) A Kaposi’s sarcoma-associated herpesvirus-encoded cytokine homolog (vIL-6) activates signaling through the shared gp130 receptor subunit. J Biol Chem 272:19625–19631

    Article  PubMed  CAS  Google Scholar 

  • Moore PS, Boshoff C, Weiss RA, Chang Y (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274:1739–1744

    Article  PubMed  CAS  Google Scholar 

  • Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA (1999) Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol 73:6892–6902

    PubMed  CAS  Google Scholar 

  • Muralidhar S, Pumfery AM, Hassani M, Sadaie MR, Kishishita M, Brady JN, Doniger J, Medveczky P, Rosenthal LJ (1998) Identification of kaposin (open reading frame K12) as a human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) transforming gene. J Virol 72:4980–4988

    PubMed  CAS  Google Scholar 

  • Muralidhar S, Veytsmann G, Chandran B, Ablashi D, Doniger J, Rosenthal LJ (2000) Characterization of the human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus) oncogene, kaposin (ORF K12). J Clin Virol 16:203–213

    Article  PubMed  CAS  Google Scholar 

  • Nador RG, Milligan LL, Flore O, Wang X, Arvanitakis L, Knowles DM, Cesarman E (2001) Expression of Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor monocistronic and bicistronic transcripts in primary effusion lymphomas. Virology 287:62–70

    Article  PubMed  CAS  Google Scholar 

  • Neipel F, Fleckenstein B (1999) The role of HHV-8 in Kaposi’s sarcoma. Semin Cancer Biol 9:151–164

    Article  PubMed  CAS  Google Scholar 

  • Nicholas J, Ruvolo V, Zong J, Ciufo D, Guo HG, Reitz MS, Hayward GS (1997a) A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. J Virol 71:1963–1974

    PubMed  CAS  Google Scholar 

  • Nicholas J, Ruvolo VR, Burns WH, Sandford G, Wan X, Ciufo D, Hendrickson SB, Guo HG, Hayward GS, Reitz MS (1997b) Kaposi’s sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3:287–292

    Article  PubMed  CAS  Google Scholar 

  • Osborne J, Moore PS, Chang Y (1999) KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol 60:921–927

    Article  PubMed  CAS  Google Scholar 

  • Paulose-Murphy M, Ha NK, Xiang C, Chen Y, Gillim L, Yarchoan R, Meltzer P, Bittner M, Trent J, Zeichner S (2001) Transcription program of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 75:4843–4853

    Article  PubMed  CAS  Google Scholar 

  • Pavlova IV, Virgin HWt, Speck SH (2003) Disruption of gammaherpesvirus 68 gene 50 demonstrates that Rta is essential for virus replication. J Virol 77:5731–5739

    Article  PubMed  CAS  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D (1996) Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med 2:342–346

    Article  PubMed  CAS  Google Scholar 

  • Rickabaugh TM, Brown HJ, Martinez-Guzman D, Wu TT, Tong L, Yu F, Cole S, Sun R (2004) Generation of a latency-deficient gammaherpesvirus that is protective against secondary infection. J Virol 78:9215–9223

    Article  PubMed  CAS  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977) n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268:462–464

    Article  PubMed  CAS  Google Scholar 

  • Russo JJ, Bohenzky RA, Chien MC, Chen J, Yan M, Maddalena D, Parry JP, Peruzzi D, Edelman IS, Chang Y, Moore PS (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 93:14862–14867

    Article  PubMed  CAS  Google Scholar 

  • Sadler R, Wu L, Forghani B, Renne R, Zhong W, Herndier B, Ganem D (1999) A complex translational program generates multiple novel proteins from the latently expressed kaposin (K12) locus of Kaposi’s sarcoma-associated herpesvirus. J Virol 73:5722–5730

    PubMed  CAS  Google Scholar 

  • Said W, Chien K, Takeuchi S, Tasaka T, Asou H, Cho SK, de Vos S, Cesarman E, Knowles DM, Koeffler HP (1996) Kaposi’s sarcoma-associated herpesvirus (KSHV or HHV8) in primary effusion lymphoma: ultrastructural demonstration of herpesvirus in lymphoma cells. Blood 87:4937–4943

    PubMed  CAS  Google Scholar 

  • Sakakibara S, Ueda K, Chen J, Okuno T, Yamanishi K (2001) Octamer-binding sequence is a key element for the autoregulation of Kaposi’s sarcoma-associated herpesvirus ORF50/Lyta gene expression. J Virol 75:6894–6900

    Article  PubMed  CAS  Google Scholar 

  • Sarid R, Flore O, Bohenzky RA, Chang Y, Moore PS (1998) Transcription mapping of the Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) genome in a body cavity-based lymphoma cell line (BC-1). J Virol 72:1005–1012

    PubMed  CAS  Google Scholar 

  • Saveliev A, Zhu F, Yuan Y (2002) Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi’s sarcoma-associated herpesvirus. Virology 299:301–314

    Article  PubMed  CAS  Google Scholar 

  • Schulz TF, Moore PS (1999) Kaposi’s sarcoma-associated herpesvirus: a new human tumor virus, but how? Trends Microbiol 7:196–200

    Article  PubMed  CAS  Google Scholar 

  • Seaman WT, Quinlivan EB (2003) Lytic switch protein (ORF50) response element in the Kaposi’s sarcoma-associated herpesvirus K8 promoter is located within but does not require a palindromic structure. Virology 310:72–84

    Article  PubMed  CAS  Google Scholar 

  • Seaman WT, Ye D, Wang RX, Hale EE, Weisse M, Quinlivan EB (1999) Gene expression from the ORF50/K8 region of Kaposi’s sarcoma-associated herpesvirus. Virology 263:436–449

    Article  PubMed  CAS  Google Scholar 

  • Sharma-Walia N, Krishnan HH, Naranatt PP, Zeng L, Smith MS, Chandran B (2005) ERK1/2 and MEK1/2 induced by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. J Virol 79:10308–10329

    Article  PubMed  CAS  Google Scholar 

  • Song MJ, Brown HJ, Wu TT, Sun R (2001) Transcription activation of polyadenylated nuclear RNA by RTA in human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus. J Virol 75:3129–3140

    Article  PubMed  CAS  Google Scholar 

  • Song MJ, Deng H, Sun R (2003) Comparative study of regulation of RTA-responsive genes in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 77: 9451–9462

    Article  PubMed  CAS  Google Scholar 

  • Song MJ, Hwang S, Wong W, Round J, Martinez-Guzman D, Turpaz Y, Liang J, Wong B, Johnson RC, Carey M, Sun R (2004) The DNA architectural protein HMGB1 facilitates RTA-mediated viral gene expression in gamma-2 herpesviruses. J Virol 78:12940–12950

    Article  PubMed  CAS  Google Scholar 

  • Song MJ, Li X, Brown HJ, Sun R (2002) Characterization of interactions between RTA and the promoter of polyadenylated nuclear RNA in Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 76:5000–5013

    Article  PubMed  CAS  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. (1995) Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280

    PubMed  CAS  Google Scholar 

  • Staskus KA, Sun R, Miller G, Racz P, Jaslowski A, Metroka C, Brett-Smith H, Haase AT (1999) Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. J Virol 73:4181–4187

    PubMed  CAS  Google Scholar 

  • Staskus KA, Zhong W, Gebhard K, Herndier B, Wang H, Renne R, Beneke J, Pudney J, Anderson DJ, Ganem D, Haase AT (1997) Kaposi’s sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J Virol 71:715–719

    PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Miller G (1996) Polyadenylylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 93:11883–11888

    Article  PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Gradoville L, Yuan Y, Zhu F, Miller G (1998) A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci USA 95:10866–10871

    Article  PubMed  CAS  Google Scholar 

  • Sun R, Lin SF, Staskus K, Gradoville L, Grogan E, Haase A, Miller G (1999) Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73:2232–2242

    PubMed  CAS  Google Scholar 

  • Ueda K, Ishikawa K, Nishimura K, Sakakibara S, Do E, Yamanishi K (2002) Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) replication and transcription factor activates the K9 (vIRF) gene through two distinct cis elements by a non-DNA-binding mechanism. J Virol 76:12044–12054

    Article  PubMed  CAS  Google Scholar 

  • Vieira J, Huang ML, Koelle DM, Corey L (1997) Transmissible Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in saliva of men with a history of Kaposi’s sarcoma. J Virol 71:7083–7087

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang J, Zhang L, Harrington W, Jr., West JT, Wood C (2005) Modulation of human herpesvirus 8/Kaposi’s sarcoma-associated herpesvirus replication and transcription activator transactivation by interferon regulatory factor 7. J Virol 79:2420–2431

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Liu S, Wu MH, Geng Y, Wood C (2001) Identification of a cellular protein that interacts and synergizes with the RTA (ORF50) protein of Kaposi’s sarcoma-associated herpesvirus in transcriptional activation. J Virol 75:11961–11973

    Article  PubMed  CAS  Google Scholar 

  • Wang SE, Wu FY, Yu Y, Hayward GS (2003) CCAAT/enhancer-binding protein-α is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol 77:9590–9612

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Chong OT, Yuan Y (2004) Differential regulation of K8 gene expression in immediate-early and delayed-early stages of Kaposi’s sarcoma-associated herpesvirus. Virology 325:149–163

    Article  PubMed  CAS  Google Scholar 

  • Wong EL, Damania B (2006) Transcriptional regulation of the Kaposi’s sarcoma-associated herpesvirus K15 gene. J Virol 80:1385–1392

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Grunstein M (2000) 25 years after the nucleosome model: chromatin modifications. Trends Biochem Sci 25:619–623

    Article  PubMed  CAS  Google Scholar 

  • Wu TT, Tong L, Rickabaugh T, Speck S, Sun R (2001) Function of Rta is essential for lytic replication of murine gammaherpesvirus 68. J Virol 75:9262–9273

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, AuCoin DP, Huete AR, Cei SA, Hanson LJ, Pari GS (2005) A Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 ORF50 deletion mutant is defective for reactivation of latent virus and DNA replication. J Virol 79:3479–3487

    Article  PubMed  CAS  Google Scholar 

  • Young LS, Lau R, Rowe M, Niedobitek G, Packham G, Shanahan F, Rowe DT, Greenspan D, Greenspan JS, Rickinson AB, et al. (1991) Differentiation-associated expression of the Epstein-Barr virus BZLF1 transactivator protein in oral hairy leukoplakia. J Virol 65:2868–2874

    PubMed  CAS  Google Scholar 

  • Yu Y, Wang SE, Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22:59–70

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wang J, Wood C, Xu D, Zhang L (2005) Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8 replication and transcription activator regulates viral and cellular genes via interferon-stimulated response elements. J Virol 79:5640–5652

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Chiu J, Lin JC (1998) Activation of human herpesvirus 8 (HHV-8) thymidine kinase (TK) TATAA-less promoter by HHV-8 ORF50 gene product is SP1 dependent. DNA Cell Biol 17:735–742

    Article  PubMed  CAS  Google Scholar 

  • Zhong W, Ganem D (1997) Characterization of ribonucleoprotein complexes containing an abundant polyadenylated nuclear RNA encoded by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8). J Virol 71:1207–1212

    PubMed  CAS  Google Scholar 

  • Zhong W, Wang H, Herndier B, Ganem D (1996) Restricted expression of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genes in Kaposi sarcoma. Proc Natl Acad Sci USA 93:6641–6646

    Article  PubMed  CAS  Google Scholar 

  • Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ (2002) Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: application for genetic analysis. J Virol 76:6185–6196

    Article  PubMed  CAS  Google Scholar 

  • Zhu FX, Cusano T, Yuan Y (1999) Identification of the immediate-early transcripts of Kaposi’s sarcoma-associated herpesvirus. J Virol 73:5556–5567

    PubMed  CAS  Google Scholar 

  • Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F (2004) Effective inhibition of Rta expression and lytic replication of Kaposi’s sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci USA 101:9073–9078

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deng, H., Liang, Y., Sun, R. (2007). Regulation of KSHV Lytic Gene Expression. In: Boshoff, C., Weiss, R.A. (eds) Kaposi Sarcoma Herpesvirus: New Perspectives. Current Topics in Microbiology and Immunology, vol 312. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34344-8_6

Download citation

Publish with us

Policies and ethics