Skip to main content

Interactions Between Ecto-mycorrhizal and Saprotrophic Fungi

  • Chapter
Book cover Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

The microbiota of most forest soils is dominated by ecto-mycorrhizal and saprotrophic decomposer fungi which are the main organisms involved respectively in the supply of nutrients to trees and the decomposition of woody plant litter. In recognition of the pivotal role that these fungi play in plant nutrition and nutrient cycles in plantations and natural forests, the activities of their mycelial systems have been independently investigated in recent years. Such studies have revealed remarkable structural and functional similarities between these organisms, particularly in their active foraging for nitrogen and phosphorus in soils. This has highlighted the need to determine the nature and extent of interactions between the two groups of organisms. The use of radioactive tracers, time-sequence photography and digital image analysis of microcosms containing non-sterile soil in which the two groups of fungi are grown with their natural carbon resources have provided novel insights into their interactions. When mycelia of the fungi meet in soil they often interact strongly, resulting in cessation of growth or even die-back of mycelium. Such inhibition can be accompanied by loss of nutrients to the opposing fungus. This chapter reviews current evidence and presents some new data showing that interactions between the mycelial systems of mycorrhizal and saprotrophic fungi have major effects on the functioning of these organisms and upon nutrient and carbon cycling processes in temperate and boreal forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103: 481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi: utilisation of individual amino acids. Trans Br Mycol Soc 91: 473–479

    Article  CAS  Google Scholar 

  • Agerer R (1991) Characterisation of ectomycorrhiza. Methods Microbiol 23: 25–73

    Article  Google Scholar 

  • Anderson IC, Chambers SM, Cairney JWG (1998) Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal basidiomycete Pisolithus tinctorius. Mycol Res 102: 295–300

    Article  Google Scholar 

  • Badth E, Söderström B (1979) Fungal biomass and fungal immobilisation of plant nutrients in Swedish coniferous forest soils. Rev Ecol Biol Soils 16: 477–489

    Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. The foraging behaviour of ectomycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 401–409

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilising enzymes in birch litter colonised by Paxillus involutus ( Fr.) Fr. New Phytol 130: 411–417

    Google Scholar 

  • Berg B, Lindberg T (1980) Is litter decomposition retarded in the presence of mycorrhiza in forest soil? Swedish Coniferous Forest Project Internal Report 95, p 10

    Google Scholar 

  • Boddy L (1993) Cord forming fungi: warfare strategies and other ecological aspects. Mycol Res 97: 641–655

    Article  Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 91: 13–32

    Article  Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes–a review. FEMS Microbiol Ecol 31: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73 [Suppl]: 51377 - S1383

    Article  Google Scholar 

  • Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of Mycorrhizae. INRA, Paris, pp 689–693

    Google Scholar 

  • Cairney JWG (1991) Structural and ontogenetic study of ectomycorrhizal rhizomorphs. In: Varma AK, Read DJ, Norris JR (eds) Experiments with mycorrhizae. Academic Press, London

    Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96: 135–141

    Article  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1994) Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis. Mycol Res 98: 1345–1356

    Article  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ectomycorrhizal symbiosis. New Phytol 134: 685–695

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1999) Do ecto-and ericoid mycorrhizal fungi produce peroxidase activity? Mycorrhiza 8: 61–65

    Article  Google Scholar 

  • Cairney JWG, Jennings DH, Veltkamp CJ (1989) A scanning electron microscope study of the internal structure of mature linear mycelial organs of four basidiomycete species. Can J Bot 67: 2266–2271

    Article  Google Scholar 

  • Cairney JWG, Jennings DH, Agerer R (1991) The nomenclature of fungal multi-hyphal linear aggregates. Cryptogam Bot 2: 246–251

    Google Scholar 

  • Caldwell BA, Castellano MA, Griffiths RP (1991) Fatty acid esterase production by ectomycorrhizal fungi. Mycologia 83: 233–236

    Article  CAS  Google Scholar 

  • Chakravarty P, Unestam T (1987) Mycorrhizal fungi prevent disease in stressed pine seedlings. J Phytopathol 118: 335–340

    Article  Google Scholar 

  • Colpaert JV, van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and leaf-saprotrophic basidiomycetes colonising beech leaf litter. New Phytol 134: 133–141

    Article  CAS  Google Scholar 

  • Colpaert JV, van Tichelen KK (1996) Decomposition, nitrogen and phosphorus mineralization from beech leaf litter colonized by ectomycorrhizal or litter-decomposing basidiomycetes. New Phytol 134: 123–132

    Article  Google Scholar 

  • Cumming JR, Weinstein LH (1990) Utilization of A1PO4 as a phosphorus source by ectomycorrhizal Pinus rigida. New Phytol 116: 99–106

    Article  CAS  Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L. Fr) Roussel revealed by somatic incompatibility. New Phytol 128: 225–234

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119

    Google Scholar 

  • Dighton J (1983) Phosphatase production by mycorrhizal fungi. Plant Soil 71: 455–462

    Article  CAS  Google Scholar 

  • Dighton J, Thomas ED, Latter PM (1987) Interactions between tree roots, mycorrhizas, a saprotrophic fungus and the decomposition of organic substrates in a microcosm. Biol Fertil Soils 4: 145–150

    Article  Google Scholar 

  • Donnelly DP, Boddy L (1998) Developmental and morphological responses of mycelial systems of Stropharia caerulea and Phanerochaete velutina to soil nutrient enrichment. New Phytol 138: 519–531

    Article  Google Scholar 

  • Dowson CG, Rayner ADM, Boddy L (1988) The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogeneous and heterogeneous environments. New Phytol 109: 423–432

    Article  Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1988) Interaction between the ectomycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66: 558–562

    Article  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287: 834–836

    Article  Google Scholar 

  • Durall DM, Todd AW, Trappe JM (1994) Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytol 127: 725–729

    Article  CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K (1991) Litter decomposition and nutrient release in ectomycorrhizal mat soils of a Douglas-fir ecosystem. Soil Biol Biochem 23: 285–290

    Article  CAS  Google Scholar 

  • Entry JA, Rose CL, Cromack K (1992). Microbial biomass and nutrient concentrations in hyphal mats of the ectomycorrhizal fungus Hysterangium setchellii in a coniferous forest soil. Soil Biol Biochem 24: 447–453

    Article  Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141: 525–533

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143–156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b). The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelium interconnecting host plants. New Phytol 103: 157–165

    Google Scholar 

  • Finlay RD, Ek H, Oldham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110: 59–66

    Article  Google Scholar 

  • Finlay RD, Ek H, Oldham G, Söderström B (1989) Uptake, translo cation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113: 47–55

    Article  CAS  Google Scholar 

  • Franz F, Acker G (1995) Rhizomorphs of Picea-abies ectomycorrhizae - ultratructural aspects and elemental analysis ( EELS and ESI) on hyphal inclusions. Nova Hedwigia 60: 253–267

    Google Scholar 

  • Gadgil RL, Gadgil PD (1971) Mycorrhiza and litter decomposition. Nature 233:133 Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J For Sci 5: 35–41

    Google Scholar 

  • Gianfrancesco RU (1999) Phosphorus nutrition of mycorrhizal and non-mycorrhizal plants of upland soils with special reference to the utilization of the phosphodiester DNA under sterile conditions. PhD Thesis, University of Sheffield, UK, 309 pp

    Google Scholar 

  • Gramss G, Kirsche B, Voigt K-D, Günther T, Fritsche W (1999) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103: 1009–1018

    Article  CAS  Google Scholar 

  • Granlund HI, Jennings DH, Thompson W (1985) Translocation of solutes along rhizomorphs of Armillaria mellea. Trans Br Mycol Soc 84: 111–119

    Article  Google Scholar 

  • Griffiths RP, Caldwell BA (1992) Mycorrhizal mat communities in forest soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 98–105

    Google Scholar 

  • Harmer R, Alexander IJ (1985) Effect of root exclusion on nitrogen transformations and decomposition processes in spruce humus. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soils: plants, microbes and animals. Blackwell, Oxford, pp 277–279

    Google Scholar 

  • Haselwandter K, Bobleter 0, Read DJ (1990) Degradation of 14C-labelled lignin and dehydropolymer of coniferyl alcohol by ericoid and ectomycorrhizal fungi. Arch Microbiol 153: 352–354

    Article  CAS  Google Scholar 

  • Hiura T, Sano J, Konno Y (1996) Age structure and response to fine scale disturbances of Abies sachalinensis, Picea jezoensis, Picea glehnii, and Betula ermanii growing under the influence of a dwarf bamboo understory in northern Japan. Can J For Res 26: 289–297

    Article  Google Scholar 

  • Hodge A, Alexander IJ, Gooday W, Killham K (1996) Carbon allocation patterns in fungi in the presence of chitin in the external medium. Mycol Res 100: 1428–1430

    Article  CAS  Google Scholar 

  • Ingham ER, Griffiths RP, Cromack K, Entry JA (1991) Comparison of direct vs. fumigation incubation microbial biomass estimates from ectomycorrhizal mat and non-mat soils. Soil Biol Biochem 23: 465–472

    Article  Google Scholar 

  • Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62: 215–243

    Article  CAS  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge Univ Press, Cambridge, pp 158–250

    Book  Google Scholar 

  • Leake JR, Read DJ (1990) Chitin as a nitrogen source for mycorrhizal fungi. Mycol Res 94: 993–995

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial habitats. In: Wicklow DT, Söderström B (eds) The Mycota. I V. Environmental and microbial relationships. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Boddy L, Read DJ (2001) Rates and quantities of carbon flux to ectomycorrhizal mycelium following 14C pulse labelling of Pinus sylvestris L seedlings: effects of litter patches and interaction with a wood-decomposer fungus. Tree Physiol 21: 71–82

    Article  PubMed  CAS  Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay RD (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144: 183–193

    Article  CAS  Google Scholar 

  • Markkola AM, Ohtonen R, Tarvainen O, Ahonen-Jonnarth U (1995) Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytol 131: 139–147

    Article  Google Scholar 

  • Maser C (1988) From the forest to the sea: a story of fallen trees. USDA Rep PNW-GTR-229, Portland, Oregon

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392: 914–916

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83: 991–1000

    Article  Google Scholar 

  • Northup RR, Zengshou Y, Dahlgren RA, Vogt K (1995). Polyphenol control of nitrogen release from pine litter. Nature 377: 227–229

    Article  CAS  Google Scholar 

  • Olsson PA, Francis R, Read DJ, Soderstrom B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201: 9–16

    Article  CAS  Google Scholar 

  • Olsson S, Gray SN (1998) Pattern and dynamics of 32P-phosphate and labelled 2aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol Ecol 26: 109–120

    Article  CAS  Google Scholar 

  • Pérez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via vegetative mycelium of ectomycorrhizal plants. New Phytol 145: 301–309

    Article  Google Scholar 

  • Persson T, Bââth E, Clarholm M, Lundkvist H, Söderström BE, Solenius B (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. In: Persson T (ed) Structure and function of northern coniferous forests. Ecol Bull (Stockh) 32: 419–459

    Google Scholar 

  • Ponge JF (1990) Ecological study of a forest humus by observing a small volume. I. Penetration of pine litter by mycorrhizal fungi. Eur J For Pathol 20: 290–303

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47: 376–391

    Article  Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, London, pp 102–133

    Google Scholar 

  • Ryan EA, Alexander IJ (1992) Mycorrhizal aspects of improved growth of spruce when grown in mixed stands on heathlands. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 237–245

    Google Scholar 

  • Shaw TM, Dighton J, Sanders FE (1995) Interactions between ectomycorrhizal and saprotrophic fungi on agar and in association with seedlings of lodgepole pine (Pinus contorta). Mycol Res 99: 159–165

    Article  Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993) Cell to cell transport via motile tubules in growing hyphae of a fungus. J Cell Sci 105: 1173–1178

    PubMed  Google Scholar 

  • Sivapalan K (1982) Humification of polyphenol-rich plant residues. Soil Biol Biochem 14: 309–310

    Article  CAS  Google Scholar 

  • Smith ML, Bruhn, JN, Anderson JB (1992) The fungus Armillaria-bulbosa is among the largest and oldest living organisms. Nature 356: 428–431

    Article  Google Scholar 

  • Staaf H (1988) Litter decomposition in beech forests–effect of excluding the roots. Biol Fertil Soils 6: 302–305

    Article  Google Scholar 

  • Tanesaka AE, Masuda H, Kinugawa K (1993) Wood degrading ability of basidiomycetes that are wood decomposers, litter decomposers or mycorrhizal symbionts. Mycologia 85: 347–354

    Article  Google Scholar 

  • Thompson W, Rayner ADM (1982) Structure and development of mycelial cord systems of Phanerochaete laevis in soil. Trans Br Mycol Soc 78: 193–200

    Article  Google Scholar 

  • Timonen S, Sen R (1998) Heterogeneity of fungal and plant enzyme expression in intact Scots pine Suillus bovinus and Paxillus involutus mycorrhizosphere developed in natural forest humus. New Phytol 138: 355–366

    Article  Google Scholar 

  • Timonen S, Finlay RD, Olsson S, Söderström B (1996) Dynamics of phosphorus translocation in intact ectomycorrhizal systems: non destructive monitoring using a b-scanner. FEMS Microbiol Ecol 19: 171–180

    CAS  Google Scholar 

  • Trojanowski J, Haider K, Hüttermann A (1984) Decomposition of “C-labelled lignin, holocellulose and lignocellulose by mycorrhizal fungi. Arch Microbiol 139: 202–206

    Article  CAS  Google Scholar 

  • Tsuneda A, Thorn RG (1995) Interactions of wood decay fungi with other microorganisms, with emphasis on the degradation of cell walls. Can J Bot 73 [Suppll: S1325 - S1333

    Google Scholar 

  • Unestam T (1991) Water repellency, mat formation and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1: 13–20

    Article  Google Scholar 

  • Wadekar RV, North MJ, Watkinson SC (1995) Proteolytic enzymes in two wood-decaying basidiomycte fungi, Serpula lacrymans and Coriolus versicolor. Microbiology 141: 1575–1583

    Article  CAS  Google Scholar 

  • Watkinson SC (1971) Phosphorus translocation in the stranded and unstranded mycelium of Serpula lacrimans. Trans Br Mycol Soc 57: 535–539

    Article  CAS  Google Scholar 

  • Watkinson SC (1984) Inhibition of growth and development of Serpula lacrymans by the non-metabolised amino acid analogue 2-aminoisobutyric acid. FEMS Microbiol Lett 24: 247–250

    CAS  Google Scholar 

  • Wells JM, Boddy L (1990) Wood decay, and phosphorus and fungal biomass allocation in mycelial cord systems. New Phytol 116: 285–295

    Article  CAS  Google Scholar 

  • Wells JM, Boddy L (1995a) Translocation of soil-derived phosphorus in mycelial cord systems in relation to inoculum resource size. FEMS Microbial Ecol 17: 67–75

    Article  CAS  Google Scholar 

  • Wells JM, Boddy L (1995b) Effect of temperature on wood decay and translocation of soil derived phosphorus in mycelial cord systems. New Phytol 129: 289–297

    Article  CAS  Google Scholar 

  • Wells JM, Boddy L (1995 c) Phosphorus translocation by saprotrophic basidiomycete mycelial cord systems on the floor of a mixed deciduous woodland. Mycol Res 99: 977–980

    Google Scholar 

  • Wells JM, Hughes C, Boddy L (1990) The fate of soil-derived phosphorus in mycelial cord systems of Phanerochaete velutina and Phallus impudicus. New Phytol 114: 595–606

    Article  CAS  Google Scholar 

  • Wells JM, Boddy L, Evans R (1995) Carbon translocation in mycelial cord systems of Phanerochaete velutina (DC.: Pers.) Parmasto. New Phytol 129: 467–476

    Google Scholar 

  • Wells JM, Donnelly DP, Boddy L (1997) Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrient-depleted soil. New Phytol 136: 653–665

    Article  Google Scholar 

  • Wells JM, Boddy L, Donnelly DP (1998a) Wood decay and phosphorus translocation by the cord-forming basidiomycete Phanerochaete velutina: the significance of local nutrient supply. New Phytol 138: 607–617

    Article  CAS  Google Scholar 

  • Wells JM Harris MJ, Boddy L (1998b) Temporary phosphorus partitioning in mycelial systems of the cord-forming basidiomycete Phanerochaete velutina. New Phytol 140: 283–293

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leake, J.R., Donnelly, D.P., Boddy, L. (2002). Interactions Between Ecto-mycorrhizal and Saprotrophic Fungi. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics