Skip to main content

The Centromere-Drive Hypothesis: A Simple Basis for Centromere Complexity

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 48))

Abstract

Centromeres are far more complex and evolutionarily labile than expected based on their conserved, essential function. The rapid evolution of both centromeric DNA and proteins strongly argue that centromeres are locked in an evolutionary conflict to increase their odds of transmission during asymmetric (female) meiosis. Evolutionary success for “cheating” centromeres can result in highly deleterious consequences for the species, either in terms of skewed sex ratios or male sterility. Centromeric proteins evolve rapidly to suppress the deleterious effects of “centromere-drive.” This chapter summarizes the mounting evidence in favor of the centromere-drive model, and its implications for centromere evolution in taxa with variations in meiosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad K, Henikoff S (2002) Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99(Suppl 4):16477–16484

    Article  PubMed  CAS  Google Scholar 

  • Bensasson D, Zarowiecki M, Burt A, Koufopanou V (2008) Rapid evolution of yeast centromeres in the absence of drive. Genetics 178:2161–2167

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Foltz DR, Chakravarthy S, Luger K, Woods VL Jr, Cleveland DW (2004) Structural determinants for generating centromeric chromatin. Nature 430:578–582

    Article  PubMed  CAS  Google Scholar 

  • Black BE, Jansen LE, Maddox PS, Foltz DR, Desai AB, Shah JV, Cleveland DW (2007) Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell 25:309–322

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Karpen GH (2001) The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat Cell Biol 3:730–739

    Article  PubMed  CAS  Google Scholar 

  • Blower MD, Sullivan BA, Karpen GH (2002) Conserved organization of centromeric chromatin in flies and humans. Dev Cell 2:319–330

    Article  PubMed  CAS  Google Scholar 

  • Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S (1999) A histone-H3-like protein in C. elegans. Nature 401:547–548

    Article  CAS  Google Scholar 

  • Buckler EST, Phelps-Durr TL, Buckler CS, Dawe RK, Doebley JF, Holtsford TP (1999) Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153:415–426

    PubMed  CAS  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict. Belknap Press

    Google Scholar 

  • Cervantes MD, Xi X, Vermaak D, Yao MC, Malik HS (2006) The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol Biol Cell 17:485–497

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  PubMed  CAS  Google Scholar 

  • Clarke L, Baum MP (1990) Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol Cell Biol 10:1863–1872

    PubMed  CAS  Google Scholar 

  • Cooper JL, Henikoff S (2004) Adaptive evolution of the histone fold domain in centromeric histones. Mol Biol Evol 21:1712–1718

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M, Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Daniel A (2002) Distortion of female meiotic segregation and reduced male fertility in human Robertsonian translocations: consistent with the centromere model of co-evolving centromere DNA/centromeric histone (CENP-A). Am J Med Genet 111:450–452

    Article  PubMed  Google Scholar 

  • Dawe RK, Cande WZ (1996) Induction of centromeric activity in maize by suppressor of meiotic drive 1. Proc Natl Acad Sci USA 93:8512–8517

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1976) The selfish gene. Oxford University Press

    Google Scholar 

  • Dover GA, Strachan T, Coen ES, Brown SD (1982) Molecular drive. Science 218:1069

    Article  PubMed  CAS  Google Scholar 

  • Eaker S, Pyle A, Cobb J, Handel MA (2001) Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci 114:2953–2965

    PubMed  CAS  Google Scholar 

  • Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–1562

    Google Scholar 

  • Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in mimulus (monkeyflower) hybrids. Genetics 169:347–353

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald-Hayes M, Clarke L, Carbon J (1982) Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–244

    Article  PubMed  CAS  Google Scholar 

  • Ganetzky B (1999) Yuichiro Hiraizumi and forty years of segregation distortion. Genetics 152:1–4

    PubMed  CAS  Google Scholar 

  • Haaf T, Willard HF (1997) Chromosome-specific alpha-satellite DNA from the centromere of chimpanzee chromosome 4. Chromosoma 106:226–232

    Article  PubMed  CAS  Google Scholar 

  • Halverson D, Baum M, Stryker J, Carbon J, Clarke L (1997) A centromere DNA-binding protein from fission yeast affects chromosome segregation and has homology to human CENP-B. J Cell Biol 136:487–500

    Article  PubMed  CAS  Google Scholar 

  • Halverson D, Gutkin G, Clarke L (2000) A novel member of the Swi6p family of fission yeast chromo domain-containing proteins associates with the centromere in vivo and affects chromosome segregation. Mol Gen Genet 264:492–505

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL (1975) Modifier theory and meiotic drive. Theor Popul Biol 7:168–174

    Article  PubMed  CAS  Google Scholar 

  • Hawley RS, Irick H, Zitron AE, Haddox DA, Lohe A, New C, Whitley MD, Arbel T, Jang J, McKim K (1992). There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology. Dev Genet 13:440–467

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Malik HS (2002) Centromeres: selfish drivers. Nature 417:227

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kreitman M, Aguade M (1987) A test of neutral molecular evolution based on nucleotide data. Genetics 116:153–159

    PubMed  CAS  Google Scholar 

  • Jutier D, Derome N, Montchamp-Moreau C (2004) The sex-ratio trait and its evolution in Drosophila simulans: a comparative approach. Genetica 120:87–99

    Article  PubMed  CAS  Google Scholar 

  • Karpen GH, Le MH, Le H (1996) Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273:118–122

    Article  PubMed  CAS  Google Scholar 

  • Kettaneh NP, Hartl DL (1980) Ultrastructural analysis of spermiogenesis in segregation distorter males of Drosophila melanogaster: the homozygotes. Genetics 96:665–683

    PubMed  CAS  Google Scholar 

  • Kusano A, Staber C, Chan HY, Ganetzky B (2003) Closing the (Ran)GAP on segregation distortion in Drosophila. Bioessays 25:108–115

    Article  PubMed  CAS  Google Scholar 

  • Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J (2005) Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species. Proc Natl Acad Sci USA 102:11793–11798

    Article  PubMed  CAS  Google Scholar 

  • Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Lohe AR, Brutlag DL (1987) Identical satellite DNA sequences in sibling species of Drosophila. J Mol Biol 194:161–170

    Article  PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Bayes JJ (2006) Genetic conflicts during meiosis and the evolutionary origins of centromere complexity. Biochem Soc Trans 34:569–573

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–1298

    PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891

    Article  PubMed  CAS  Google Scholar 

  • Malik HS, Henikoff S (2009) Major evolutionary transitions in centromere complexity. Cell (submitted)

    Google Scholar 

  • Mark Welch D, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288:1211–1215

    Article  PubMed  CAS  Google Scholar 

  • McAllister BF, Werren JH (1999) Evolution of tandemly repeated sequences: What happens at the end of an array? J Mol Evol 48:469–481

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • McKee BD, Wilhelm K, Merrill C, Ren X (1998) Male sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila. Role of X-Y pairing. Genetics 149:143–155

    CAS  Google Scholar 

  • Merrill C, Bayraktaroglu L, Kusano A, Ganetzky B (1999) Truncated RanGAP encoded by the segregation distorter locus of Drosophila. Science 283:1742–1745

    Article  PubMed  CAS  Google Scholar 

  • Monen J, Maddox PS, Hyndman F, Oegema K, Desai A (2005) Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis. Nat Cell Biol 7:1248–1255

    Article  PubMed  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Wohlert M (1991) Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 87:81–83

    Article  PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Wener MH, Andrews BS, Margolis RL (1987) A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J Cell Biol 104:805–815

    Article  PubMed  CAS  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001a) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189

    CAS  Google Scholar 

  • Pardo-Manuel de Villena F, Sapienza C (2001b) Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome 12:331–339

    Article  CAS  Google Scholar 

  • Platero JS, Ahmad K, Henikoff S (1999) A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol Cell 4:995–1004

    Article  PubMed  CAS  Google Scholar 

  • Rhoades M (1942) Preferential segregation in maize. Genetics 27:395–407

    PubMed  CAS  Google Scholar 

  • Rudd MK, Wray GA, Willard HF (2006) The evolutionary dynamics of alpha-satellite. Genome Res 16:88–96

    Article  PubMed  CAS  Google Scholar 

  • Samonte RV, Ramesh KH, Verma RS (1997) Comparative mapping of human alphoid satellite DNA repeat sequences in the great apes. Genetica 101:97–104

    Article  PubMed  CAS  Google Scholar 

  • Sandler L, Novitski E (1957) Meiotic drive as an evolutionary force. Am Nat 41:105–110

    Article  Google Scholar 

  • Sandler L, Hiraizumi Y, Sandler I (1959) Meiotic drive in natural populations of Drosophila melanogaster. I. The cytogenetic basis of segregation-distortion. Genetics 44:233–250

    PubMed  CAS  Google Scholar 

  • Sawamura K, Yamamoto MT (1993) Cytogenetical localization of Zygotic hybrid rescue (Zhr), a Drosophila melanogaster gene that rescues interspecific hybrids from embryonic lethality. Mol Gen Genet 239:441–449

    Article  PubMed  CAS  Google Scholar 

  • Sawamura K, Yamamoto MT, Watanabe TK (1993) Hybrid lethal systems in the Drosophila melanogaster species complex. II. The Zygotic hybrid rescue (Zhr) gene of D. melanogaster. Genetics 133:307–313

    PubMed  CAS  Google Scholar 

  • Schueler MG, Higgins AW, Rudd MK, Gustashaw K, Willard HF (2001) Genomic and genetic definition of a functional human centromere. Science 294:109–115

    Article  PubMed  CAS  Google Scholar 

  • Shelby RD, Vafa O, Sullivan KF (1997) Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol 136:501–513

    Article  PubMed  CAS  Google Scholar 

  • Stephan W (1989) Tandem-repetitive noncoding DNA: forms and forces. Mol Biol Evol 6:198–212

    PubMed  CAS  Google Scholar 

  • Stephan W, Cho S (1994) Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics 136:333–341

    PubMed  CAS  Google Scholar 

  • Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M (1995) A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev 9:573–586

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Le HD, Wahlstrom JM, Karpen GH (2003) Sequence analysis of a functional Drosophila centromere. Genome Res 13:182–194

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Chen ES, Yanagida M (2000) Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Bryson TD, Henikoff S (2004) Adaptive evolution of centromere proteins in plants and animals. J Biol 3:18

    Article  PubMed  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Hartl DL, Laurie CC (2001) Sex-ratio segregation distortion associated with reproductive isolation in Drosophila. Proc Natl Acad Sci USA 98:13183–13188

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Hayden HS, Henikoff S (2002) Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 22:7553–7561

    Article  PubMed  CAS  Google Scholar 

  • Vermaak D, Henikoff S, Malik HS (2005) Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLoS Genet 1:96–108

    Article  PubMed  CAS  Google Scholar 

  • Walsh JB (1987) Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics 115:553–567

    PubMed  CAS  Google Scholar 

  • Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, Hornsby T, Howarth S, Huckle EJ, Hunt S, Jagels K, James K, Jones L, Jones M, Leather S, McDonald S, McLean J, Mooney P, Moule S, Mungall K, Murphy L, Niblett D, Odell C, Oliver K, O’Neil S, Pearson D, Quail MA, Rabbinowitsch E, Rutherford K, Rutter S, Saunders D, Seeger K, Sharp S, Skelton J, Simmonds M, Squares R, Squares S, Stevens K, Taylor K, Taylor RG, Tivey A, Walsh S, Warren T, Whitehead S, Woodward J, Volckaert G, Aert R, Robben J, Grymonprez B, Weltjens I, Vanstreels E, Rieger M, Schafer M, Muller-Auer S, Gabel C, Fuchs M, Dusterhoft A, Fritzc C, Holzer E, Moestl D, Hilbert H, Borzym K, Langer I, Beck A, Lehrach H, Reinhardt R, Pohl TM, Eger P, Zimmermann W, Wedler H, Wambutt R, Purnelle B, Goffeau A, Cadieu E, Dreano S, Gloux S, Lelaure V, Mottier S, Galibert F, Aves SJ, Xiang Z, Hunt C, Moore K, Hurst SM, Lucas M, Rochet M, Gaillardin C, Tallada VA, Garzon A, Thode G, Daga RR, Cruzado L, Jimenez J, Sanchez M, del Rey F, Benito J, Dominguez A, Revuelta JL, Moreno S, Armstrong J, Forsburg SL, Cerutti L, Lowe T, McCombie WR, Paulsen I, Potashkin J, Shpakovski GV, Ussery D, Barrell BG, Nurse P (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  PubMed  CAS  Google Scholar 

  • Wu CI, Lyttle TW, Wu ML, Lin GF (1988) Association between a satellite DNA sequence and the responder of segregation distorter in D. melanogaster. Cell 54:179–189

    CAS  Google Scholar 

  • Wu CI, True JR, Johnson N (1989) Fitness reduction associated with the deletion of a satellite DNA array. Nature 341:248–251

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Ando S, Morishita S, Houmura K, Hashimoto K, Takeyasu K, Okazaki T (2000) Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci USA 97:7266–7271

    Article  PubMed  CAS  Google Scholar 

  • Yoda K, Morishita S, Hashimoto K (2004) Histone variant CENP-A purification, nucleosome reconstitution. Methods Enzymol 375:253–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang P, Knowles BA, Goldstein LS, Hawley RS (1990) A kinesin-like protein required for distributive chromosome segregation in Drosophila. Cell 62:1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Zwick ME, Salstrom JL, Langley CH (1999) Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 152:1605–1614

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author’s lab is supported for its studies on centromeres by a grant from the National Institutes of Health (R01-GM74108). The author is grateful to Josh Bayes and Danielle Vermaak for their comments and help with figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malik, H.S. (2009). The Centromere-Drive Hypothesis: A Simple Basis for Centromere Complexity. In: Ugarkovic, D. (eds) Centromere. Progress in Molecular and Subcellular Biology, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00182-6_2

Download citation

Publish with us

Policies and ethics