Skip to main content

Toll-Like Receptors in Alzheimer's Disease

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 336))

Abstract

Alzheimer’s disease (AD) is characterized by the formation of insoluble deposits of β-amyloid (Aβ) within the parenchyma of the brain. These deposits are associated with a robust microglia-mediated inflammatory response. Recent work has demonstrated that Toll-like receptors (TLRs) participate in this inflammatory response. This chapter reviews the mechanisms whereby TLRs contribute to the induction of a microglial inflammatory response to promote AD pathogenesis. Specifically, the involvement of CD14 and the TLRs in microglial activation is delineated. The TLR-mediated microglial response has beneficial roles in stimulating phagocytosis as well as detrimental roles in the Aβ-stimulated release of neurotoxic products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Aβ:

β-Amyloid

AD:

Alzheimer’s disease

APP:

Amyloid precursor protein

BACE:

β-Secretase

FPRL1:

Formyl peptide receptor-like 1

IFN:

Interferon

IL:

Interleukin

IRAK:

IL-1 receptor-associated kinase

IRF:

Interferon regulatory factor

MAPK:

Mitogen-activated protein kinase

MHC II:

Major histocompatibility complex II

mFPR2:

Murine formyl peptide receptor 2

MyD88:

Myeloid differentiation primary response gene 88

NSAIDs:

Nonsteroidal anti-inflammatory drugs

PRRs:

Pattern recognition receptors

PAMPs:

Pathogen-associated molecular patterns

RIP1:

Receptor-interacting protein 1

TABs:

TAK1-binding proteins

TAK:

TGF-β-activated kinase

TBK1:

TRAF family member-associated NF-κB activator binding kinase 1

TGF-β:

Transforming growth factor-β

Th2:

T-helper 2

TIR:

Toll/IL-1 receptor

TIRAP/MAL:

TIR-containing adaptor protein/MyD88 adaptor-like

TNF-α:

Tumor necrosis factor α

TLRs:

Toll-like receptors

TRAF:

TNF-associated factor

TRAM/TICAM2:

TIR-domain-containing adaptor molecule/TRIF-related adaptor molecule 2

TRIF/TICAM:

1 TIR-containing adaptor inducing IFN-β/TIR-domain containing adaptor molecule 1

References

  • Adhikari A, Xu M, Chen Z (2007) Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 26:3214–3226

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole G, Cooper N, Eikelenboom P, Emmerling M, Fiebich B, Finch C, Frautschy S, Griffin W, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie I, McGeer P, O’Banion K, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel F, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  CAS  Google Scholar 

  • Arbour N, Lorenz E, Schutte B, Zabner J, Kline J, Jones M, Frees K, Watt J, Schwartz D (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191

    Article  PubMed  CAS  Google Scholar 

  • Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674

    PubMed  CAS  Google Scholar 

  • Bate C, Kempster S, Williams A (2006) Prostaglandin D2 mediates neuronal damage by amyloid-beta or prions which activate microglial cells. Neuropharmacology 50:229–237

    Article  PubMed  CAS  Google Scholar 

  • Bate C, Veerhuis R, Eikelenboom P, Williams A (2004) Microglia kill amyloid-b1–42 damaged neurons by a CD14-dependent process. NeuroReport 15:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Blander J, Medzhitov R (2004) Regulation of phagosome maturation by signals from toll-like receptors. Science 304:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Blasko I, Grubeck-Loebenstein B (2003) Role of the immune system in the pathogenesis, prevention and treatment of Alzheimer’s disease. Drugs Aging 20:101–113

    Article  PubMed  CAS  Google Scholar 

  • Bolmont T, Haiss F, Eicke D, Radde R, Mathis C, Klunk W, Kohsaka S, Jucker M, Calhoun M (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283–4292

    Article  PubMed  CAS  Google Scholar 

  • Bornemann K, Wiederhold K, Pauli C, Ermini F, Stalder M, Schnell L, Sommer B, Jucker M, Staufenbiel M (2001) Abeta-induced inflammatory processes in microglial cells of APP23 transgenic mice. Am J Pathol 158:63–73

    Article  PubMed  CAS  Google Scholar 

  • Chan W, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53:344–354

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Bhatia D, Chang Q, Castranova V (2006a) Finding NEMO by K63-linked polyubiquitin chain. Cell Death Differ 13:1835–1838

    Article  CAS  Google Scholar 

  • Chen K, Iribarren P, Hu J, Chen J, Gong W, Cho E, Lockett S, Dunlop N, Wang J (2006b) Activation of Toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. J Biol Chem 281:3651–3659

    Article  CAS  Google Scholar 

  • Combs C, Karlo J, Kao S, Landreth G (2001) Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21:1179–1188

    PubMed  CAS  Google Scholar 

  • Crouch P, Harding S, White A, Camakaris J, Bush A, Masters C (2008) Mechanisms of Ab mediated neurodegeneration in Alzheimer’s disease. Int J Biochem Cell Biol 40:181–198

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Le Y, Yazawa H, Gong W, Wang J (2002) Potential role for the formyl peptide receptor-like 1 (FPRL1) in inflammatory aspects of Alzheimer’s disease. J Leukoc Biol 72:628–635

    PubMed  CAS  Google Scholar 

  • Cusson-Hermance N, Khurana S, Lee T, Fitzgerald K, Kelliher M (2005) Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 280:36560–36566

    Article  PubMed  CAS  Google Scholar 

  • Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  PubMed  CAS  Google Scholar 

  • Dziedzic T (2006) Systemic inflammatory markers and risk of dementia. Am J Alzheimers Dis Other Demen 21:258–262

    Article  PubMed  Google Scholar 

  • El Benna J, Han J, Park J, Schmid E, Ulevitch R, Babior B (1996) Activation of p38 in stimulated human neutrophils: phosphorylation of the oxidase component p47phox by p38 and ERK but not by JNK. Arch Biochem Biophys 334:395–400

    Article  PubMed  CAS  Google Scholar 

  • Fassbender K, Walter S, Kuhl S, Landmann R, Ishii K, Bertsch T, Stalder A, Muehlhauser F, Liu Y, Ulmer A, Rivest S, Lentschat A, Gulbins E, Jucker M, Stafenbiel M, Brechtel K, Walter J, Multhaup G, Penke B, Adachi Y, Hartmann T, Beyreuther K (2004) The LPS receptor (CD14) links innate immunity with Alzheimer’s disease. FASEB J 18:203–205

    PubMed  CAS  Google Scholar 

  • Fiala M, Liu P, Espinosa-Jeffery A, Rosenthal M, Bernard G, Ringman J, Sayre M, Zhang L, Zaghi J, Dejbakhsh S, Chiang B, Hui J, Mahanian M, Baghaee A, Hong P, Cashman J (2007) Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer’s disease patients are improved by bisdemethoxycurcumin. Proc Natl Acad Sci USA 104:12849–12854

    Article  PubMed  CAS  Google Scholar 

  • Findeis M (2007) The role of amyloid b peptide 42 in Alzheimer’s disease. Pharmacol Ther 116:266–286

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald K, McWhirter S, Faia K, Rowe D, Latz E, Golenbock D, Coyle A, Liao S, Maniatis T (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4:491–496

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 908:244–254

    Article  PubMed  CAS  Google Scholar 

  • Fratiglioni L, Winblad B, von Strauss E (2007) Prevention of Alzheimer’s disease and dementia. Major findings from the Kungsholmen Project. Physiol Behav 92:98–104

    Article  PubMed  CAS  Google Scholar 

  • Goerdt S, Orfanos CE (1999) Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10:137–142

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3:23–35

    Article  PubMed  CAS  Google Scholar 

  • Gorelick P (2004) Risk factors for vascular dementia and Alzheimer’s disease. Stroke 35:2620–2622

    Article  PubMed  Google Scholar 

  • Haga S, Akai K, Ishii T (1989) Demonstration of microglial cells in and around senile (neuritic) plaques in the Alzheimer brain. An immunohistochemical study using a novel monoclonal antibody. Acta Neuropathol (Berl) 77:569–575

    Article  CAS  Google Scholar 

  • Han J, Ulevitch R (2005) Limiting inflammatory responses during activation of innate immunity. Nat Immunol 6:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Hanisch U, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28:8354–8360

    Article  PubMed  CAS  Google Scholar 

  • in’t Veld B, Ruitenberg A, Launer J (2000) Duration of nonsteroidal anti-inflammatory drug use and risk of Alzheimer’s disease. The Rotterdam study. Neurobiol Aging 21:S204

    Article  Google Scholar 

  • Iribarren P, Chen K, Hu J, Gong W, Cho E, Lockett S, Uranchimeg B, Wang J (2005a) CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid beta 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J 19:2032–2034

    CAS  Google Scholar 

  • Iribarren P, Zhou Y, Hu J, Le Y, Wang J (2005b) The role of formyl peptide receptor like 1 (FPRL1/MFPR2) in mononuclear phagocyte responses in Alzheimer’s disease. Immunol Res 31:165–176

    Article  CAS  Google Scholar 

  • Jana M, Palencia CA, Pahan K (2008) Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 181:7254–7262

    PubMed  CAS  Google Scholar 

  • Jankowsky J, Fadale D, Anderson J, Xu G, Gonzales V, Jenkins N, Copeland N, Lee M, Younkin L, Wagner S, Younkin S, Borchelt D (2004) Mutant presenilins specifically elevate levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Human Mol Genet 13:159–170

    Article  CAS  Google Scholar 

  • Jiang Z, Mak T, Sen G, Li X (2004) Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci USA 101:3533–3538

    Article  PubMed  CAS  Google Scholar 

  • Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    Google Scholar 

  • Kawai T, Akira S (2007) Signaling to NF-kB by Toll-like receptors. Trends Mol Med 13:460–469

    Article  PubMed  CAS  Google Scholar 

  • Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    Article  PubMed  CAS  Google Scholar 

  • Koenigsknecht J, Landreth G (2004) Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci 24:9838–9846

    Article  PubMed  CAS  Google Scholar 

  • Koenigsknecht-Talboo J, Landreth GE (2005) Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by pro-inflammatory cytokines. J Neurosci 25:8240–8249

    Article  PubMed  CAS  Google Scholar 

  • Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146:248–254

    Article  PubMed  CAS  Google Scholar 

  • Letiembre M, Liu Y, Walter S, Hao W, Pfander T, Wrede A, Schulz-Schaeffer W, Fassbender K (2009) Screening of innate immune receptors in neurodegenerative diseases: a similar pattern. Neurobiol Aging 30:759–768

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 128:1778–1789

    Article  PubMed  Google Scholar 

  • Lotz M, Ebert S, Esselmann H, Iliev A, Prinz M, Wiazewicz N, Wiltfang J, Gerber J, Nau R (2005) Amyloid beta peptide 1–40 enhances action of Toll like receptor-2 and -4 agonists but antagonizes Toll-like receptor-9-induced inflammation in primary mouse microglial cell cultures. J Neurochem 94:289–298

    Article  PubMed  CAS  Google Scholar 

  • Luber-Narod J, Rogers J (1988) Immune system associated antigens expressed by cells of the human central nervous system. Neurosci Lett 94:17–22

    Article  PubMed  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  • McDonald DR, Bamberger ME, Combs CK, Landreth GE (1998) b-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP-1 monocytes. J Neurosci 18:4451–4460

    PubMed  CAS  Google Scholar 

  • McGeer P, Akiyama H, Itagaki S, McGeer E (1989) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16:516–527

    PubMed  CAS  Google Scholar 

  • McGeer P, Schulzer M, McGeer E (1996) Arthritis and antiiinflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiological studies. Neurology 47:425–432

    PubMed  CAS  Google Scholar 

  • Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1:135–145

    Article  PubMed  CAS  Google Scholar 

  • Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kelliher M, Tschopp J (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 5:503–507

    Article  PubMed  CAS  Google Scholar 

  • Minoretti P, Gazzaruso C, Vito C, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility of late-onset Alzheimer’s disease. Neurosci Lett 391:147–149

    Article  PubMed  CAS  Google Scholar 

  • Neumann H, Wekerle H (1998) Neuronal control of the immune response in the central nervous system: linking brain immunity to neurodegeneration. J Neuropathol Exp Neurol 57:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  PubMed  CAS  Google Scholar 

  • Nomura F, Kawai T, Nakanishi K, Akira S (2000) NF-kappaB activation through IKK-i-dependent I-TRAF/TANK phosphorylation. Genes Cells 5:191–202

    Article  PubMed  CAS  Google Scholar 

  • Patel N, Paris D, Mathura V, Quadros A, Crawford F, Mullan M (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu M, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciari-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in TLR4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz J, Baltimore D (1999) NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18:6694–6704

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff R (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10:1507–1509

    Article  PubMed  CAS  Google Scholar 

  • Reed-Geaghan E, Landreth G (2007) CD14 and its associated toll like receptors mediate microglial activation by fAb. In: Society for Neuroscience (ed) 2007 Neuroscience Meeting Planner, vol 688. Society for Neuroscience, San Diego

    Google Scholar 

  • Rich JB, Rasmusson DX, Folstein MF, Carson KA, Kawas C, Brandt J (1995) Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 45:51–55

    PubMed  CAS  Google Scholar 

  • Richard KL, Filali M, Prefontaine P, Rivest S (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28:5784–5793

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Rodriguez E, Sanchez-Juan P, Mateo I, Infante J, Sanchez-Quintana C, Garcia-Gorostiaga I, Berciano J, Combarros O (2008) Interaction between CD14 and LXRbeta genes modulates Alzheimer’s disease risk. J Neurol Sci 264:97–99

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Kirby LC, Hempelman SR, Berry DL, McGeer PL, Kaszniak AW, Zalinski J, Cofield M, Mansukhani L, Willson P, et al. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43:1609–1611

    PubMed  CAS  Google Scholar 

  • Rogers J, Luber-Narod J, Styren S, Civin W (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  PubMed  CAS  Google Scholar 

  • Sanjo H, Takeda K, Tsujimura T, Ninomiya-Tsuji J, Matsumoto K, Akira S (2003) TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 23:1231–1238

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003) Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol 171:4303–4310

    Google Scholar 

  • Selkoe D (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann NY Acad Sci 924:17–25

    Article  PubMed  CAS  Google Scholar 

  • Seong S, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev 4:469–478

    Article  CAS  Google Scholar 

  • Sharma S, tenOever B, Grandvaux N, Zhou G, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Shim J, Xiao C, Paschal A, Bailey S, Rao P, Hayden M, Lee K, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S (2005) TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 19:2668–2681

    Article  PubMed  CAS  Google Scholar 

  • Simard A, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J 18:998–1000

    PubMed  CAS  Google Scholar 

  • Stalder M, Deller T, Staufenbiel M, Jucker M (2001) 3D-reconstruction of microglia and amyloid in APP23 transgenic mice: no evidence of intracellular amyloid. Neurobiol Aging 22:427–434

    Article  PubMed  CAS  Google Scholar 

  • Stewart W, Kawas C, Corrada M, Metter E (1997) Rish of Alzheimer’s disease and duration of NSAID use. Neurology 4:626–632

    Google Scholar 

  • Styren S, Civin W, Rogers J (1990) Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer’s disease brain. Exp Neurol 110:93–104

    Article  PubMed  CAS  Google Scholar 

  • Tahara K, Kim H, Jin J, Maxwell J, Li L, Fukuchi K (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019

    Article  PubMed  Google Scholar 

  • Tiffany H, Lavigne M, Cui Y, Wang J, Leto T, Gao J, Murphy M (2001) Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 276:645–652

    Article  Google Scholar 

  • Tsan M, Gao B (2007) Pathogen-associated molecular pattern contamination as putative endogenous ligands of Toll-like receptors. J Endotoxin Res 13:6–14

    Article  PubMed  CAS  Google Scholar 

  • Udan M, Ajit D, Crouse N, Nichols M (2008) Toll-like receptors 2 and 4 mediate Ab(1–42) activation of the innate immune response in a human monocytic cell line. J Neurochem 104:524–533

    PubMed  CAS  Google Scholar 

  • Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schaeffer W, Fassbender K (2007) Role of the Toll-like receptor 4 in neuro-inflammation in Alzheimer’s disease. Cell Physiol Biochem 20:947–956

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju G, Inoue J, Chen Z (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Koenigsknecht-Talboo J, Grommes C, Lee CY, Landreth G (2006) Fibrillar beta-amyloid-stimulated intracellular signaling cascades require Vav for induction of respiratory burst and phagocytosis in monocytes and microglia. J Biol Chem 281:20842–20850

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 169:6668–6672

    PubMed  CAS  Google Scholar 

  • Yazawa H, Yu Z, Takeda X, Le Y, Gong W, Ferrans V, Oppenheim J, Li C, Wang J (2001) Beta amyloid peptide (Abeta42) is internalized via the G-protein-coupled receptor FPRL1 and forms fibrillar aggregates in macrophages. FASEB J 15:2454–2462

    Article  PubMed  CAS  Google Scholar 

  • Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu Z, Le Y, Cui Y, Wang J (2004) Humanin, a newly identified neuroprotective factor, uses the G protein coupled formylpeptide receptor-like-1 as a functional receptor. J Immunol 172:7078–7085

    PubMed  CAS  Google Scholar 

  • Younkin S (1998) The role of A beta 42 in Alzheimer’s disease. J Physiol Paris 92:289–292

    Article  PubMed  CAS  Google Scholar 

  • Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan E, Landreth G, Vinters H, Tontonoz P (2007) Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA 104:10601–10606

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIA (AG16047), the Blanchette Hooker Rockefeller Foundation, and the American Health Assistance Foundation. Erin Reed-Geaghan is supported by a predoctoral Ruth L. Kirschstein National Research Service Award (F31NS057867) from the NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary E. Landreth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landreth, G.E., Reed-Geaghan, E.G. (2009). Toll-Like Receptors in Alzheimer's Disease. In: Kielian, T. (eds) Toll-like Receptors: Roles in Infection and Neuropathology. Current Topics in Microbiology and Immunology, vol 336. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00549-7_8

Download citation

Publish with us

Policies and ethics