Skip to main content

Pharmacokinetics and Metabolism of Natural Methylxanthines in Animal and Man

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

Caffeine, theophylline, theobromine, and paraxanthine administered to animals and humans distribute in all body fluids and cross all biological membranes. They do not accumulate in organs or tissues and are extensively metabolized by the liver, with less than 2% of caffeine administered excreted unchanged in human urine. Dose-independent and dose-dependent pharmacokinetics of caffeine and other dimethylxanthines may be observed and explained by saturation of metabolic pathways and impaired elimination due to the immaturity of hepatic enzyme and liver diseases. While gender and menstrual cycle have little effect on their elimination, decreased clearance is seen in women using oral contraceptives and during pregnancy. Obesity, physical exercise, diseases, and particularly smoking and the interactions of drugs affect their elimination owing to either stimulation or inhibition of CYP1A2. Their metabolic pathways exhibit important quantitative and qualitative differences in animal species and man. Chronic ingestion or restriction of caffeine intake in man has a small effect on their disposition, but dietary constituents, including broccoli and herbal tea, as well as alcohol were shown to modify their plasma pharmacokinetics. Using molar ratios of metabolites in plasma and/or urine, phenotyping of various enzyme activities, such as cytochrome monooxygenases, N-acetylation, 8-hydroxylation, and xanthine oxidase, has become a valuable tool to identify polymorphisms and to understand individual variations and potential associations with health risks in epidemiological surveys.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1,3,7DAU:

6-Amino-5(N-formylmethylamino)-1,3-dimethyluracil

1,3,7TMU:

1,3,7-Trimethyluric acid

1,3DMU:

1,3-Dimethyluric acid

1,7DAU:

6-Amino-5-(N-formylmethylamino)-3-methyluracil

1,7DMU:

1,7-Dimethyluric acid

1MU:

1-Methyluric acid

1MX:

1-Methylxanthine

3,7DAU:

6-Amino-5-(N-formylmethylamino)-1-methyluracil

3,7DMU:

3,7-Dimethyluric acid

3MU:

3-Methyluric acid

3MX:

3-Methylxanthine

7MU:

7-Methyluric acid

7MX:

7-Methylxanthine

AAMU:

5-Acetylamino-6-amino-3-methyluracil

AFMU:

5-Acetylamino-6-formylamino-3-methyluracil

AUC:

Area under the concentration versus time curve

C max :

Peak plasma concentration

CYP:

Cytochrome P450

GSH:

Glutathione

IBW:

Ideal body weight

K a :

Absorption rate constant

K e :

Elimination rate constant

K m :

Michaelis–Menten constant

NAT2:

N-Acetyltransferase 2

TBW:

Total body weight

T max :

Time to reach the peak plasma concentration

References

  • Abdi F, Pollard I, Wilkinson J (1993) Placental transfer and foetal disposition of caffeine and its immediate metabolites in the 20-day pregnant rat: function of dose. Xenobiotica 23(4):449–456

    Article  PubMed  CAS  Google Scholar 

  • Abernethy D, Todd E (1985) Impairment of caffeine clearance by chronic use of low-dose estrogen-containing oral contraceptives. Eur J Clin Pharmacol 28(4):425–428

    Article  PubMed  CAS  Google Scholar 

  • Abernethy DR, Todd EL, Schwartz JB (1985) Caffeine disposition in obesity. Br J Clin Pharmacol 20(1):61–66

    Article  PubMed  CAS  Google Scholar 

  • Aldridge A, Neims AH (1979) The effects of phenobarbital and beta-naphthoflavone on the elimination kinetics and metabolite pattern of caffeine in the beagle dog. Drug Metab Dispos 7(6):378–382

    PubMed  CAS  Google Scholar 

  • Aldridge A, Neims AH (1980) Relationship between the clearance of caffeine and its 7-N-demethylation in developing beagle puppies. Biochem Pharmacol 29(3):1909–1914

    Article  PubMed  CAS  Google Scholar 

  • Amchin J, Zarycranski W, Taylor KP, Albano D, Klockowski PM (1999) Effect of venlafaxine on CYP1A2-dependent pharmacokinetics and metabolism of caffeine. J Clin Pharmacol 39(3):252–259

    PubMed  CAS  Google Scholar 

  • Amodio P, Lauro S, Rondana M, Crema G, Merkel C, Gatta A, Ruol A (1991) Theophylline pharmacokinetics and liver function indexes in chronic liver disease. Respiration 58(2):106–111

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1991) International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans, WHO, vol 51. Coffee, tea, maté, methylxanthines and methylglyoxal. WHO, Geneva, p 513

    Google Scholar 

  • Aranda JV, Louridas AT, Vitullo BB, Thom P, Aldridge A, Haber R (1979) Metabolism of theophylline to caffeine in human fetal liver. Science 206(4424):1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Arimori K, Nakano M (1988) Dose-dependency in the exsorption of theophylline and the intestinal dialysis of theophylline by oral activated charcoal in rats. J Pharm Pharmacol 40(2):101–105

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1976) Identification, kinetic and quantitative study of [2-14C] and [1-Me-14C] caffeine metabolites in rat’s urine by chromatographic separations. Biochem Med 16(1):67–76

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ (1980) Metabolism of labeled paraxanthine in the rat: comparison of rat and human metabolic pathway. Nutr Rev 38(5):196–200

    Google Scholar 

  • Arnaud MJ (1983) The effect of dietary factors on the bioavailability of methylxanthines. Proceedings of the toxicology forum, Aspen, Colorado, pp 234–243

    Google Scholar 

  • Arnaud MJ (1984) Products of metabolism of caffeine. In: Dews PB (ed) caffeine. Springer, Berlin, pp 3–38

    Chapter  Google Scholar 

  • Arnaud MJ (1985) Comparative metabolic disposition of [1-Me14C] caffeine in rats, mice, and Chinese hamsters. Drug Metab Dispos 13(4):471–478

    PubMed  CAS  Google Scholar 

  • Arnaud MJ (1987) The pharmacology of caffeine. Prog Drug Res 31:273–313

    PubMed  CAS  Google Scholar 

  • Arnaud MJ (1988) The metabolism of coffee constituents in coffee, vol 3. In: Clarke RJ, Macrae R (eds) Physiology. Elsevier, London, pp 33–55

    Google Scholar 

  • Arnaud MJ (1993a) Metabolism of caffeine and other components of coffee. In: Garattini S (ed) Caffeine coffee and health. Raven, New York, pp 43–95

    Google Scholar 

  • Arnaud MJ (1993b) Caffeine, vol 1. In: Macrae R, Robinson RK, Sadler MJ (eds) Encyclopaedia of food science, food technology and nutrition. Academic, London, pp 566–571

    Google Scholar 

  • Arnaud MJ (1998) Pharmacokinetics and metabolism of caffeine. In: Snel J, Lorist MM (eds) Nicotine, caffeine and social drink, behaviour and brain function. Harwood, Amsterdam, pp 153–165

    Google Scholar 

  • Arnaud MJ, Ben Zvi Z, Yaari A, Gorodischer R (1986a) 1,3,8-Trimethylallantoin: a major caffeine metabolite formed by rat liver. Res Commun Chem Pathol Pharmacol 52(3):407–410

    PubMed  CAS  Google Scholar 

  • Arnaud MJ, Bracco I (1981) Distribution and metabolism of theophylline in the pregnant rat: presence of a blood brain barrier. Experientia 37(6):665

    Google Scholar 

  • Arnaud MJ, Bracco I, Getaz F (1989) Synthesis of ring labelled caffeine for the study of metabolic and pharmacokinetics mouse interstrain differences in relation to pharmacologic and toxic effects. In: Baillie TA, Jones JR (eds) Synthesis and applications of isotopically labelled compounds. Elsevier, Amsterdam, pp 645–648

    Google Scholar 

  • Arnaud MJ, Bracco I, Sauvageat JL, Clerc MF (1983) Placental transfer of the major caffeine metabolite in the rat using 6-amino-5[N-formylmethylamino]1, 3[Me-14C]-dimethyluracil administered orally or intravenously to the pregnant rat. Toxicol Lett 16(3–4):271–279

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Bracco I, Welsch C (1982a) Metabolism and distribution of labeled theophylline in the pregnant rat. Impairment of theophylline metabolism by pregnancy and absence of a blood-brain barrier in the fetus. Pediatr Res 16(3):167–171

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Enslen M (1992) The role of paraxanthine in mediating physiological effects of caffeine. In: 14th international conference in coffee science, San Francisco, 14–19 July 1991. Proceedings ASIC, Paris, pp 71–79

    Google Scholar 

  • Arnaud MJ, Gétaz F (1982) Postnatal establishment of a blood-brain barrier for theobromine in the rat. Experientia 38(6):752

    Google Scholar 

  • Arnaud MJ, Gétaz F (1983) Theobromine distribution in the pregnant rat and the fetus and the impairment of its metabolism due to pregnancy. Experientia 39(6):678

    Google Scholar 

  • Arnaud MJ, Richli U, Philippossian G (1986b) Isolation and identification of paraxanthine glucuronide as the major caffeine metabolite in mice. Experientia 42(6):696

    Google Scholar 

  • Arnaud MJ, Thelin-Doerner A, Ravussin E, Acheson KJ (1980) Study of the demethylation of [1,3,7-Me-13C] caffeine in man using respiratory exchange measurements. Biomed Mass Spectrom 7(11–12):521–524

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Welsch C (1979a) Metabolic pathway of theobromine in the rat and identification of two new metabolites in human urine. J Agric Food Chem 27(3):524–527

    Article  PubMed  CAS  Google Scholar 

  • Arnaud MJ, Welsch C (1979b) Metabolism of [1-Me-14C] paraxanthine in the rat: identification of a new metabolite. Experientia 35(7):946

    Google Scholar 

  • Arnaud MJ, Welsch C (1980a) Caffeine metabolism in human subjects. In: Proceedings of the ninth international colloquium on science and technology of coffee. Association Scientifique Internationale du Cafe, London, pp 385–395

    Google Scholar 

  • Arnaud MJ, Welsch C (1980b) Quantitative analysis of theophylline metabolites by HPLC, after oral or i.v. administration. Experientia 36(6):704

    Google Scholar 

  • Arnaud MJ, Welsch C (1982) Theophylline and caffeine metabolism in man. In: Woodcock BG, Staib AH, Rietbrock N (eds) Methods in clinical pharmacology, 3: theophylline and other methylxanthines. Vieweg, Brunswick, pp 135–148

    Google Scholar 

  • Arnaud MJ, Wietholtz H, Voegelin M, Bircher J, Preisig R (1982b) Assessment of the cytochrome P-448 dependent liver enzyme system by a caffeine breath test. In: Sato R (ed) Microsomes drug oxidation and drug toxicity. Wiley, New York, pp 443–444

    Google Scholar 

  • Arold G, Donath F, Maurer A, Diefenbach K, Bauer S, Henneicke-von Zepelin HH, Friede M, Roots I (2005) No relevant interaction with alprazolam, caffeine, tolbutamide, and digoxin by treatment with a low-hyperforin St John’s wort extract. Planta Med 71(4):331–337

    Article  PubMed  CAS  Google Scholar 

  • Azcona O, Barbanoj MJ, Torrent J, Jané F (1995) Evaluation of the central effects of alcohol and caffeine interaction. Br J Clin Pharmacol 40(4):393–400

    Article  PubMed  CAS  Google Scholar 

  • Backman JT, Karjalainen MJ, Neuvonen M, Laitila J, Neuvonen PJ (2006) Rofecoxib is a potent inhibitor of cytochrome P450 1A2: studies with tizanidine and caffeine in healthy subjects. Br J Clin Pharmacol 62(3):345–357

    Article  PubMed  CAS  Google Scholar 

  • Bapiro TE, Sayi J, Hasler JA, Jande M, Rimoy G, Masselle A, Masimirembwa CM (2005) Artemisinin and thiabendazole are potent inhibitors of cytochrome P450 1A2 (CYP1A2) activity in humans. Eur J Clin Pharmacol 61(10):755–761

    Article  PubMed  CAS  Google Scholar 

  • Bayar C, Ozer I (1997) A study on the route of 1-methylurate formation in theophylline metabolism. Eur J Drug Metab Pharmacokinet 22(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Bchir F, Dogui M, Ben Fradj R, Arnaud MJ, Saguem S (2006) Differences in pharmacokinetic and electroencephalographic responses to caffeine in sleep-sensitive and non-sensitive subjects. C R Biol 329(7):512–519

    Article  PubMed  CAS  Google Scholar 

  • Beach CA, Mays DC, Sterman BM, Gerber N (1985) Metabolism, distribution, seminal excretion and pharmacokinetics of caffeine in the rabbit. J Pharmacol Exp Ther 233(1):18–23

    PubMed  CAS  Google Scholar 

  • Becker AB, Simons KJ, Gillespie CA, Simons FE (1984) The bronchodilator effects and pharmacokinetics of caffeine in asthma. N Engl J Med 310(12):743–746

    Article  PubMed  CAS  Google Scholar 

  • Begas E, Kouvaras E, Tsakalof A, Papakosta S, Asprodini EK (2007) In vivo evaluation of CYP1A2, CYP2A6, NAT-2 and xanthine oxidase activities in a Greek population sample by the RP-HPLC monitoring of caffeine metabolic ratios. Biomed Chromatogr 21(2):190–200

    Article  PubMed  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd, Mayan H, Denaro C (1995) Sympathomimetic effects of paraxanthine and caffeine in humans. Clin Pharmacol Ther 58(6):684–691

    Article  PubMed  CAS  Google Scholar 

  • Berdel D, Süverkrüp R, Heimann G, von Berg A, Liappis N, Stühmer A (1987) Total theophylline clearance in childhood: the influence of age-dependent changes in metabolism and elimination. Eur J Pediatr 146(1):41–43

    Article  PubMed  CAS  Google Scholar 

  • Bienvenu T, Pons G, Rey E, Richard MO, d'Athis P, Arnaud MJ, Olive G (1990) Effect of growth hormone on caffeine metabolism in hypophysectomized rats. Drug Metab Dispos 18(3):327–330

    PubMed  CAS  Google Scholar 

  • Birkett DJ, Miners JO, Attwood J (1983) Secondary metabolism of theophylline biotransformation products in man-route of formation of 1-methyluric acid. Br J Clin Pharmacol 15(1):117–119

    Article  PubMed  CAS  Google Scholar 

  • Birkett DJ, Dahlqvist R, Miners JO, Lelo A, Billing B (1985) Comparison of theophylline and theobromine metabolism in man. Drug Metab Dispos 13(6):725–728

    PubMed  CAS  Google Scholar 

  • Birkett DJ, Miners JO (1991) Caffeine renal clearance and urine caffeine concentrations during steady state dosing Implications for monitoring caffeine intake during sport events. Br J Clin Pharmacol 31(4):405–408

    Article  PubMed  CAS  Google Scholar 

  • Blake MJ, Abdel-Rahman SM, Pearce RE, Leeder JS, Kearns GL (2006) Effect of diet on the development of drug metabolism by cytochrome P-450 enzymes in healthy infants. Pediatr Res 60(6):717–723

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJA (1983a) The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 24(1):93–98

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJA (1983b) Comparative pharmacokinetics of caffeine in young and elderly men. J Pharmacokinet Biopharm 11(2):109–126

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJ (1983c) Relationship between urine flow rate and renal clearance of caffeine in man. J Clin Pharmacol 23(4):134–138

    PubMed  CAS  Google Scholar 

  • Blanchard J, Sawers SJA, Jonkman JHG, Tang-Liu D-S (1985) Comparison of the urinary metabolite profile of caffeine in young and elderly males. Br J Clin Pharmacol 19(2):225–232

    Article  PubMed  CAS  Google Scholar 

  • Blanchard J, Harvey S, Morgan WJ (1992) Relationship between serum and saliva theophylline levels in patients with cystic fibrosis. Ther Drug Monit 14(1):48–54

    Article  PubMed  CAS  Google Scholar 

  • Bologa M, Tang B, Klein J, Tesoro A, Koren G (1991) Pregnancy-induced changes in drug metabolism in epileptic women. J Pharmacol Exp Ther 257(2):735–740

    PubMed  CAS  Google Scholar 

  • Bonati M, Latini R, Galletti F, Young JF, Tognoni G, Garattini S (1982) Caffeine disposition after oral doses. Clin Pharmacol Ther 32(1):98–106

    Article  PubMed  CAS  Google Scholar 

  • Bonati M, Latini R, Sadurska B, Riva E, Galletti F, Borzelleca JF, Tarka SM, Arnaud MJ, Garattini S (1984) Kinetics and metabolism of theobromine in male rats. Toxicology 30(4):327–341

    Article  PubMed  CAS  Google Scholar 

  • Bortolotti A, Jiritano L, Bonati M (1985) Pharmacokinetics of paraxanthine, one of the primary metabolites of caffeine, in the rat. Drug Metab Dispos 13(2):227–231

    PubMed  CAS  Google Scholar 

  • Bory C, Baltassat P, Porthault M, Bethenod M, Frederich A, Aranda JV (1979) Metabolism of theophylline to caffeine in premature newborn infants. J Pediatr 94(6):988–993

    Article  PubMed  CAS  Google Scholar 

  • Boutroy MJ, Vert P, Monin P, Royer RJ, Royer-Morrot MJ (1979) Methylation of theophylline to caffeine in premature infants. Lancet 14(8120):830

    Article  Google Scholar 

  • Bracco D, Ferrarra J-M, Arnaud MJ, Jequier E, Schutz Y (1995) Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 269(4 Pt 1):E671–E678

    PubMed  CAS  Google Scholar 

  • Brachtel D, Richter E (1988) Effect of altered gastric emptying on caffeine absorption. Z Gastroenterol 26(5):245–251

    PubMed  CAS  Google Scholar 

  • Brandstetter Y, Kaplanski J, van Creveld C, Ben-Zvi Z (1986) Theophylline pharmacokinetics in pregnant and lactating rats. Res Commun Chem Pathol Pharmacol 53(2):269–272

    PubMed  CAS  Google Scholar 

  • Brazier JL, Descotes J, Lery N, Ollagnier M, Evreux JC (1980a) Inhibition by idrocilamide of the disposition of caffeine. Eur J Clin Pharmacol 17(1):37–43

    Article  PubMed  CAS  Google Scholar 

  • Brazier JL, Ribon B, Desage M, Salle B, Salle B (1980b) Study of theophylline metabolism in premature human newborns using stable isotope labelling. Biomed Mass Spectrom 7(5):189–192

    Article  PubMed  CAS  Google Scholar 

  • Brøsen K, Skjelbo E, Rasmussen BB, Poulsen HE, Loft S (1993) Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 45(6):1211–1214

    Article  PubMed  Google Scholar 

  • Brouwers J, Ingels F, Tack J, Augustijns P (2005) Determination of intraluminal theophylline concentrations after oral intake of an immediate- and a slow-release dosage form. J Pharm Pharmacol 57(8):987–996

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Benowitz NL (1989) Caffeine and cigarette smoking: behavioral, cardiovascular, and metabolic interactions. Pharmacol Biochem Behav 34(3):565–570

    Article  PubMed  CAS  Google Scholar 

  • Brown CR, Jacob P 3rd, Wilson M, Benowitz NL (1988) Changes in rate and pattern of caffeine metabolism after cigarette abstinence. Clin Pharmacol Ther 43(5):488–491

    Article  PubMed  CAS  Google Scholar 

  • Bruguerolle B (1987) [Changes in the pharmacokinetics of theophylline during estrus in rats]. Pathol Biol 35(2):181–183

    PubMed  CAS  Google Scholar 

  • Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF (1992) Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 2(3):116–127

    Article  PubMed  CAS  Google Scholar 

  • Callahan MM, Robertson RS, Arnaud MJ, Branfman AR, McComish MF, Yesair DW (1982) Human metabolism of [1-methyl-14C]- and [2-14C]caffeine after oral administration. Drug Metab Dispos 10(4):417–423

    PubMed  CAS  Google Scholar 

  • Campbell ME, Grant DM, Inaba T, Kalow W (1987a) Biotransformation of caffeine, paraxanthine, theophylline, and theobromine by polycyclic aromatic hydrocarbon-inducible cytochrome(s) P-450 in human liver microsomes. Drug Metab Dispos 15(2):237–249

    PubMed  CAS  Google Scholar 

  • Campbell ME, Spielberg SP, Kalow W (1987b) A urinary metabolic ratio that reflects systemic caffeine clearance. Clin Pharmacol Ther 42(2):157–165

    Article  PubMed  CAS  Google Scholar 

  • Caraco Y, Zylber-Katz E, Berry EM, Levy M (1995) Caffeine pharmacokinetics in obesity and following significant weight reduction. Int J Obes 19(4):234–239

    CAS  Google Scholar 

  • Carrillo JA, Christensen M, Ramos SI, Alm C, Dahl ML, Benitez J, Bertilsson L (2000) Evaluation of caffeine as an in vivo probe for CYP1A2 using measurements in plasma, saliva, and urine. Ther Drug Monit 22(4):409–417

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Tu JH, He YJ, Zhang W, Wang G, Tan ZR, Zhou G, Fan L, Zhou HH (2009a) Effect of sodium tanshinone II A sulfonate on the activity of CYP1A2 in healthy volunteers. Xenobiotica 39(7):508–513

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Xiao P, Ou-Yang DS, Fan L, Guo D, Wang YN, Han Y, Tu JH, Zhou G, Huang YF, Zhou HH (2009b) Simultaneous action of the flavonoid quercetin on cytochrome P450 (CYP) 1A2, CYP2A6. N-Acetyltransferase and xanthine oxidase activity in healthy volunteers. Clin Exp Pharmacol Physiol 36(8):828–833

    Article  PubMed  CAS  Google Scholar 

  • Cheng WS, Murphy TL, Smith MT, Cooksley WG, Halliday JW, Powell LW (1990) Dose-dependent pharmacokinetics of caffeine in humans: relevance as a test of quantitative liver function. Clin Pharmacol Ther 47(4):516–524

    Article  PubMed  CAS  Google Scholar 

  • Christensen M, Andersson K, Dalén P, Mirghani RA, Muirhead GJ, Nordmark A, Tybring G, Wahlberg A, Yaşar U, Bertilsson L (2003) The Karolinska cocktail for phenotyping of five human cytochrome P450 enzymes. Clin Pharmacol Ther 73(6):517–528

    Article  PubMed  CAS  Google Scholar 

  • Chung WG, Kang JH, Park CS, Cho MH, Cha YN (2000) Effect of age and smoking on in vivo CYP1A2, flavin-containing monooxygenase, and xanthine oxidase activities in Koreans: determination by caffeine metabolism. Clin Pharmacol Ther 67(3):258–266

    Article  PubMed  CAS  Google Scholar 

  • Chvasta TE, Cooke AR (1971) Emptying and absorption of caffeine from the human stomach. Gastroenterology 61(6):838–843

    PubMed  CAS  Google Scholar 

  • Collomp K, Anselme F, Audran M, Gay JP, Chanal JL, Prefaut C (1991) Effects of moderate exercise on the pharmacokinetics of caffeine. Eur J Clin Pharmacol 40(3):279–282

    Article  PubMed  CAS  Google Scholar 

  • Conner DP, Millora E, Zamani K, Nix D, Almirez RG, Rhyne-Kirsch P, Peck CC (1991) Transcutaneous chemical collection of caffeine in normal subjects: relationship to area under the plasma concentration-time curve and sweat production. J Invest Dermatol 96:186–190

    Article  PubMed  CAS  Google Scholar 

  • Cooling DS (1993) Theophylline toxicity. J Emerg Med 11(4):415–425

    Article  PubMed  CAS  Google Scholar 

  • Cornish HH, Christman AA (1957) A study of the metabolism of theobromine, theophylline, and caffeine in man. J Biol Chem 228(1):315–323

    PubMed  CAS  Google Scholar 

  • Crowley JJ, Cusack BJ, Jue SG, Koup JR, Park BK, Vestal RE (1988) Aging and drug interactions. II. Effect of phenytoin and smoking on the oxidation of theophylline and cortisol in healthy men. J Pharmacol Exp Ther 245(2):513–523

    PubMed  CAS  Google Scholar 

  • Cysneiros RM, Farkas D, Harmatz JS, von Moltke LL, Greenblatt DJ (2007) Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine. Clin Pharmacol Ther 82(1):54–62

    Article  PubMed  CAS  Google Scholar 

  • Danielson TJ, Golsteyn LR (1996) Systemic clearance and demethylation of caffeine in sheep and cattle. Drug Metab Dispos 24(10):1058–1061

    PubMed  CAS  Google Scholar 

  • Darwish M, Kirby M, Robertson P Jr, Hellriegel ET (2008) Interaction profile of armodafinil with medications metabolized by P enzymes 1A2, 3A4 and 2C19 in healthy subjects. Clin Pharmacokinet 47(1):61–74

    Article  PubMed  CAS  Google Scholar 

  • DeGraves FJ, Ruffin DC, Duran SH, Spano JS, Whatley EM, Schumacher J, Riddell MG (1995) Pharmacokinetics of caffeine in lactating dairy cows. Am J Vet Res 56(5):619–622

    PubMed  CAS  Google Scholar 

  • Delahunty T, Schoendorfer D (1998) Caffeine demethylation monitoring using a transdermal sweat patch. J Anal Toxicol 22(7):596–600

    PubMed  CAS  Google Scholar 

  • Denaro CP, Brown CR, Wilson M, Jacob P, Benowitz NL (1990) Dose-dependency of caffeine metabolism with repeated dosing. Clin Pharmacol Ther 48(3):277–285

    Article  PubMed  CAS  Google Scholar 

  • Derby KS, Cuthrell K, Caberto C, Carmella SG, Franke AA, Hecht SS, Murphy SE, Le Marchand L (2008) Nicotine metabolism in three ethnic/racial groups with different risks of lung cancer. Cancer Epidemiol Biomarkers Prev 17(12):3526–3535

    Article  PubMed  CAS  Google Scholar 

  • Derkenne S, Curran CP, Shertzer HG, Dalton TP, Dragin N, Nebert DW (2005) Theophylline pharmacokinetics: comparison of Cyp1a1(-/-) and Cyp1a2(-/-) knockout mice, humanized hCYP1A1_1A2 knock-in mice lacking either the mouse Cyp1a1 or Cyp1a2 gene, and Cyp1(+/+) wild-type mice. Pharmacogenet Genomics 15(7):503–511

    Article  PubMed  CAS  Google Scholar 

  • Desmond PV, Patwardhan RV, Johnson RF, Schenker S (1980) Impaired elimination of caffeine in cirrhosis. Dig Dis Sci 25(3):193–197

    Article  PubMed  Google Scholar 

  • Devoe LD, Murray C, Youssif A, Arnaud M (1993) Maternal caffeine consumption and fetal behavior in normal third-trimester pregnancy. Am J Obstet Gynecol 168(4):1105–1111 (discussion 1111–1112)

    Google Scholar 

  • Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E (2008) Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol 64(4):381–385

    Article  PubMed  CAS  Google Scholar 

  • Dorrbecker SH, Ferraina RA, Dorrbecker BR, Kramer PA (1987) Caffeine and paraxanthine pharmacokinetics in the rabbit: concentration and product inhibition effects. J Pharmacokinet Biopharm 15(2):117–132

    Article  PubMed  CAS  Google Scholar 

  • Dorrbecker SH, Kramer PA, Dorrbecker BR, Raye JR (1988a) Caffeine disposition in the pregnant rabbit. II. Fetal distribution of caffeine and paraxanthine during chronic maternal caffeine administration. Dev Pharmacol Ther 11(2):118–124

    PubMed  CAS  Google Scholar 

  • Dothey CI, Tserng KY, Kaw S, King KC (1989) Maturational changes of theophylline pharmacokinetics in preterm infants. Clin Pharmacol Ther 45(5):461–468

    Article  PubMed  CAS  Google Scholar 

  • Doude van Troostwijk LJ, Koopmans RP, Vermeulen HD, Guchelaar HJ (2003a) CYP1A2 activity is an important determinant of clozapine dosage in schizophrenic patients. Eur J Pharm Sci 20(4–5):451–457

    Article  PubMed  CAS  Google Scholar 

  • Doude van Troostwijk LJ, Koopmans RP, Guchelaar HJ (2003b) Two novel methods for the determination of CYP1A2 activity using the paraxanthine/caffeine ratio. Fundam Clin Pharmacol 17(3):355–362

    Article  PubMed  CAS  Google Scholar 

  • Driscoll MS, Ludden TM, Casto DT, Littlefield LC (1989) Evaluation of theophylline pharmacokinetics in a pediatric population using mixed effects models. J Pharmacokinet Biopharm 17(2):141–168

    Article  PubMed  CAS  Google Scholar 

  • Drouillard DD, Vesell ES, Dvorchik BH (1978) Studies on theobromine disposition in normal subjects. Alterations induced by dietary abstention from or exposure to methylxanthines. Clin Pharmacol Ther 23(3):296–302

    PubMed  CAS  Google Scholar 

  • du Preez MJ, Botha JH, McFadyen ML, Holford NH (1999) The pharmacokinetics of theophylline in premature neonates during the first few days after birth. Ther Drug Monit 21(6):598–603

    Article  PubMed  Google Scholar 

  • Ellis EF, Koysooko R, Levy G (1976) Pharmacokinetics of theophylline in children with asthma. Pediatrics 58(4):542–547

    PubMed  CAS  Google Scholar 

  • Faber MS, Fuhr U (2004) Time response of cytochrome P450 1A2 activity on cessation of heavy smoking. Clin Pharmacol Ther 76(2):178–184

    Article  PubMed  CAS  Google Scholar 

  • Fleetham JA, Bird CE, Nakatsu K, Wigle RD, Munt PW (1981) Dose-dependency of theophylline clearance and protein binding. Thorax 36(5):382–386

    Article  PubMed  CAS  Google Scholar 

  • Fontana RJ, deVries TM, Woolf TF, Knapp MJ, Brown AS, Kaminsky LS, Tang BK, Foster NL, Brown RR, Watkins PB (1998) Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer’s disease. Br J Clin Pharmacol 46(3):221–228

    Article  PubMed  CAS  Google Scholar 

  • Fuhr U, Anders EM, Mahr G, Sörgel F, Staib AH (1992) Inhibitory potency of quinolone antibacterial agents against cytochrome P450IA2 activity in vivo and in vitro. Antimicrob Agents Chemother 36(5):942–948

    Article  PubMed  CAS  Google Scholar 

  • Fuhr U, Klittich K, Staib AH (1993) Inhibitory effect of grapefruit juice and its bitter principal, naringenin, on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol 35(4):431–436

    Article  PubMed  CAS  Google Scholar 

  • Fuhr U, Maier A, Keller A, Steinijans VW, Sauter R, Staib AH (1995) Lacking effect of grapefruit juice on theophylline pharmacokinetics. Int J Clin Pharmacol Ther 33(6):311–314

    PubMed  CAS  Google Scholar 

  • Fuhr U, Jetter A, Kirchheiner J (2007) Appropriate phenotyping procedures for drug metabolizing enzymes and transporters in humans and their simultaneous use in the “cocktail” approach. Clin Pharmacol Ther 81(2):270–83

    Article  PubMed  CAS  Google Scholar 

  • Gal P, Jusko WJ, Yurchak AM, Franklin BA (1978) Theophylline disposition in obesity. Clin Pharmacol Ther 23(4):438–444

    PubMed  CAS  Google Scholar 

  • Gardner MJ, Jusko WJ (1982) Effect of age and sex on theophylline clearance in young subjects. Pediatr Pharmacol 2(2):157–169

    CAS  Google Scholar 

  • Gardner MJ, Tornatore KM, Jusko WJ, Kanarkowski R (1983) Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol 16(3):271–280

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Schatz M, Cousins L, Zeiger R, Middleton E, Jusko WJ (1987) Longitudinal effects of pregnancy on the pharmacokinetics of theophylline. Eur J Clin Pharmacol 32(3):289–295

    Article  PubMed  CAS  Google Scholar 

  • Gates S, Miners JO (1999) Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. Br J Clin Pharmacol 47(3):299–305

    Article  PubMed  CAS  Google Scholar 

  • George J, Murphy T, Roberts R, Cooksley WG, Halliday JW, Powell LW (1986) Influence of alcohol and caffeine consumption on caffeine elimination. Clin Exp Pharmacol Physiol 13(10):731–736

    Article  PubMed  CAS  Google Scholar 

  • Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63(6):537–546

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SG, Stavric B, Klassen RD, Rice DC (1985) The fate of chronically consumed caffeine in the monkey (Macaca fascicularis). Fundam Appl Toxicol 5(3):578–587

    Article  PubMed  CAS  Google Scholar 

  • Gorodischer R, Zmora E, Ben-Zvi Z, Warszawski D, Yaari A, Sofer S, Arnaud MJ (1986a) Urinary metabolites of caffeine in the premature infant. Eur J Clin Pharmacol 31(4):497–499

    Article  PubMed  CAS  Google Scholar 

  • Gorodischer R, Yaari A, Margalith M, Warszawski D, Ben-Zvi Z (1986b) Changes in theophylline metabolism during postnatal development in rat liver slices. Biochem Pharmacol 35(18):3077–3081

    Article  PubMed  CAS  Google Scholar 

  • Granfors MT, Backman JT, Neuvonen M, Neuvonen PJ (2004) Ciprofloxacin greatly increases concentrations and hypotensive effect of tizanidine by inhibiting its cytochrome P450 1A2-mediated presystemic metabolism. Clin Pharmacol Ther 76(6):598–606

    Article  PubMed  CAS  Google Scholar 

  • Granfors MT, Backman JT, Laitila J, Neuvonen PJ (2005) Oral contraceptives containing ethinyl estradiol and gestodene markedly increase plasma concentrations and effects of tizanidine by inhibiting cytochrome P450 1A2. Clin Pharmacol Ther 78(4):400–411

    Article  PubMed  CAS  Google Scholar 

  • Grant DM, Tang BK, Kalow W (1983) Polymorphic N-acetylation of a caffeine metabolite. Clin Pharmacol Ther 33(3):355–359

    Article  PubMed  CAS  Google Scholar 

  • Grant DM, Tang BK, Kalow W (1984) A simple test for acetylation phenotype using caffeine. Br J Clin Pharmacol 17(4):459–464

    Article  PubMed  CAS  Google Scholar 

  • Grant DM, Tang BK, Campbell ME, Kalow W (1986) Effect of allopurinol on caffeine disposition in man. Br J Clin Pharmacol 21(4):454–458

    Article  PubMed  CAS  Google Scholar 

  • Groen K, Horan MA, Roberts NA, Gulati RS, Miljkovic B, Jansen EJ, Paramsothy V, Breimer DD, van Bezooijen CF (1993) The relationship between phenazone (antipyrine) metabolite formation and theophylline metabolism in healthy and frail elderly women. Clin Pharmacokinet 25(2):136–144

    Article  PubMed  CAS  Google Scholar 

  • Grosso LM, Bracken MB (2005) Caffeine metabolism, genetics, and perinatal outcomes: a review of exposure assessment considerations during pregnancy. Ann Epidemiol 15(6):460–466

    Article  PubMed  Google Scholar 

  • Grosso LM, Triche E, Benowitz NL, Bracken MB (2008) Prenatal caffeine assessment: fetal and maternal biomarkers or self-reported intake? Ann Epidemiol 18(3):172–178

    Article  PubMed  Google Scholar 

  • Grygiel JJ, Birkett DJ (1980) Effect of age on patterns of theophylline metabolism. Clin Pharmacol Ther 28(4):456–462

    Article  PubMed  CAS  Google Scholar 

  • Grygiel JJ, Birkett DJ (1981) Cigarette smoking and theophylline clearance and metabolism. Clin Pharmacol Ther 30(4):491–496

    Article  PubMed  CAS  Google Scholar 

  • Gu L, Gonzalez FJ, Kalow W, Tang BK (1992) Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1. Pharmacogenetics 2(2):73–77

    Article  PubMed  CAS  Google Scholar 

  • Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y, Ang CY (2002) Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther 72(3):276–287

    Article  PubMed  CAS  Google Scholar 

  • Ha HR, Chen J, Freiburghaus AU, Follath F (1995) Metabolism of theophylline by cDNA-expressed human s P. Br J Clin Pharmacol 39(3):321–326

    Article  PubMed  CAS  Google Scholar 

  • Ha HR, Chen J, Krahenbuhl S, Follath F (1996) Biotransformation of caffeine by cDNA-expressed human s P. Eur J Clin Pharmacol 49(4):309–315

    Article  PubMed  CAS  Google Scholar 

  • Haller CA, Jacob P 3rd, Benowitz NL (2002) Pharmacology of ephedra alkaloids and caffeine after single-dose dietary supplement use. Clin Pharmacol Ther 71(6):421–432

    Article  PubMed  CAS  Google Scholar 

  • Hamon-Vilcot B, Simon T, Becquemont L, Poirier JM, Piette F, Jaillon P (2004) Effects of malnutrition on cytochrome P450 1A2 activity in elderly patients. Therapie 59(2):247–251

    Article  PubMed  Google Scholar 

  • Hashiguchi M, Fujimura A, Ohashi K, Ebihara A (1992) Diurnal effect on caffeine clearance. J Clin Pharmacol 32(2):184–187

    PubMed  CAS  Google Scholar 

  • Hendeles L, Weinberger M, Bighley L (1977) Absolute bioavailability of oral theophylline. Am J Hosp Pharm 34(5):525–527

    PubMed  CAS  Google Scholar 

  • Hendeles L, Massanari MJ, Weinberger M (1986) Theophylline. In: Evans WE, Schentag JJ, Jusko WJ (eds) Applied pharmacokinetics, 2nd edn. Applied Therapeutics, San Francisco, pp 1105–1188

    Google Scholar 

  • Holstege A, Staiger M, Haag K, Gerok W (1989) Correlation of caffeine elimination and Child’s classification in liver cirrhosis. Klin Wochenschr 67(1):6–15

    Article  PubMed  CAS  Google Scholar 

  • Igarashi T, Iwakawa S (2009) Effect of gender on theophylline clearance in the asthmatic acute phase in Japanese pediatric patients. Biol Pharm Bull 32(2):304–307

    Article  PubMed  CAS  Google Scholar 

  • Ingvast-Larsson C, Appelgren LE, Nyman G (1992) Distribution studies of theophylline: microdialysis in rat and horse and whole body autoradiography in rat. J Vet Pharmacol Ther 15(4):386–394

    Article  PubMed  CAS  Google Scholar 

  • Jackson SH, Johnston A, Woollard R, Turner P (1989) The relationship between theophylline clearance and age in adult life. Eur J Clin Pharmacol 36(1):29–34

    Article  PubMed  CAS  Google Scholar 

  • Jarboe CH, Hurst HE, Rodgers GC, Metaxas JM (1986) Toxicokinetics of caffeine elimination in an infant. Clin Toxicol 24(5):415–428

    Article  CAS  Google Scholar 

  • Jennings TS, Nafziger AN, Davidson L, Bertino JS Jr (1993) Gender differences in hepatic induction and inhibition of theophylline pharmacokinetics and metabolism. J Lab Clin Med 122(2):208–216

    PubMed  CAS  Google Scholar 

  • Jeppesen U, Loft S, Poulsen HE, Brøsen K (1996) A fluvoxamine-caffeine interaction study. Pharmacogenetics 6(3):213–222

    Article  PubMed  CAS  Google Scholar 

  • Jodynis-Liebert J, Flieger J, Matuszewska A, Juszczyk J (2004) Serum metabolite/caffeine ratios as a test for liver function. J Clin Pharmacol 44(4):338–347

    Article  PubMed  CAS  Google Scholar 

  • Jonkman JH, van der Boon WJ, Balant LP, Le Cotonnec JY (1985) Food reduces the rate but not the extent of the absorption of theophylline from an aqueous solution. Eur J Clin Pharmacol 28(2):225–227

    Article  PubMed  CAS  Google Scholar 

  • Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) The influence of caffeine on the steady-state pharmacokinetics of theophylline. Clin Pharmacol Ther 49(3):248–255

    Article  PubMed  CAS  Google Scholar 

  • Jung D, Nanavaty M (1990) The effects of age and dietary protein restriction on the pharmacokinetics of theophylline in the rat. Pharmacol Toxicol 66(5):361–366

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ (1979) Influence of cigarette smoking on drug metabolism in man. Drug Metab Rev 9(2):221–236

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ, Gardner MJ, Mangione A, Schentag JJ, Koup JR, Vance JW (1979) Factors affecting theophylline clearances: age, tobacco, marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates, and ethanol. J Pharm Sci 68(11):1358–1366

    Article  PubMed  CAS  Google Scholar 

  • Kadlubar FF, Butler TG, MA TCH, Massengill JP, Lang NP (1990) Determination of carcinogenic arylamine N-oxidation phenotype in humans by analysis of caffeine urinary metabolites. Prog Clin Biol Res 340B:107–114

    PubMed  CAS  Google Scholar 

  • Kall MA, Clausen J (1995) Dietary effect on mixed function P4501A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol 14(10):801–807

    Article  PubMed  CAS  Google Scholar 

  • Kalow W (1986) Ethnic differences in reactions to drugs and xenobiotics Caffeine and other drugs. Prog Clin Biol Res 214:331–341

    PubMed  CAS  Google Scholar 

  • Kalow W, Tang BK (1991a) Use of caffeine metabolic ratios to explore CYP1A2 and xanthine oxidase activities. Clin Pharmacol Ther 50(5 Pt 1):508–519

    Article  PubMed  CAS  Google Scholar 

  • Kalow W, Tang BK (1991b) Caffeine as a metabolic probe: exploration of the enzyme-inducing effect of cigarette smoking. Clin Pharmacol Ther 49(1):44–48

    Article  PubMed  CAS  Google Scholar 

  • Kamei K, Matsuda M, Momose A (1975) New sulfur-containing metabolites of caffeine. Chem Pharm Bull 23(3):683–685

    Article  CAS  Google Scholar 

  • Kamimori GH, Somani SM, Knowlton RG, Perkins RM (1987) The effects of obesity and exercise on the pharmacokinetics of caffeine in lean and obese volunteers. Eur J Clin Pharmacol 31(5):595–600

    Article  PubMed  CAS  Google Scholar 

  • Kamimori GH, Lugo SI, Penetar DM, Chamberlain AC, Brunhart GE, Brunhart AE, Eddington ND (1995) Dose-dependent caffeine pharmacokinetics during severe sleep deprivation in humans. Int J Clin Pharmacol Ther 33(3):182–186

    PubMed  CAS  Google Scholar 

  • Kawai H, Kokubun S, Matsumoto T, Kojima J, Onodera K (2000) Pharmacokinetic study of theophylline in dogs after intravenous administration with and without ethylenediamine. Methods Find Exp Clin Pharmacol 22(3):179–184

    PubMed  CAS  Google Scholar 

  • Kearns GL, Hill DE, Tumbelson ME (1986) Theophylline and caffeine disposition in the neonatal piglet. Dev Pharmacol Ther 9(6):389–401

    PubMed  CAS  Google Scholar 

  • Kilbane AJ, Silbart LK, Manis M, Beitins IZ, Weber WW (1990) Human N-acetylation genotype determination with urinary caffeine metabolites. Clin Pharmacol Ther 47(4):470–477

    Article  PubMed  CAS  Google Scholar 

  • Kim YC, Lee AK, Lee JH, Lee I, Lee DC, Kim SH, Kim SG, Lee MG (2005) Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. Eur J Pharm Sci 26(1):114–123

    Article  PubMed  CAS  Google Scholar 

  • Kimmel CA, Kimmel GL, White CG, Grafton TF, Young JF, Nelson CJ (1984) Blood flow changes and conceptal development in pregnant rats in response to caffeine. Fundam Appl Toxicol 4(2 Pt 1):240–247

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Yamazaki H, Fujieda M, Kiyotani K, Honda G, Saruwatari J, Nakagawa K, Ishizaki T, Kamataki T (2005) Cyp2a6 is a principal enzyme involved in hydroxylation of 1,7-dimethylxanthine, a main caffeine metabolite, in humans. Drug Metab Dispos 33(9):1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Kinzig-Schippers M, Fuhr U, Zaigler M, Dammeyer J, Rüsing G, Labedzki A, Bulitta J, Sörgel F (1999) Interaction of pefloxacin and enoxacin with the human cytochrome P450 enzyme CYP1A2. Clin Pharmacol Ther 65(3):262–274

    Article  PubMed  CAS  Google Scholar 

  • Kokwaro GO, Szwandt IS, Glazier AP, Ward SA, Edwards G (1993) Metabolism of caffeine and theophylline in rats with malaria and endotoxin-induced fever. Xenobiotica 23(12):1391–1397

    Article  PubMed  CAS  Google Scholar 

  • Kolski GB, Levy J, Anolik R (1987) The use of theophylline clearance in pediatric status asthmaticus. I. Interpatient and intrapatient theophylline clearance variability. Am J Dis Child 141(3):282–287

    PubMed  CAS  Google Scholar 

  • Korrapati MR, Vestal RE, Loi CM (1995) Theophylline metabolism in healthy nonsmokers and in patients with insulin-dependent diabetes mellitus. Clin Pharmacol Ther 57(4):413–418

    Article  PubMed  CAS  Google Scholar 

  • Kotake AN, Schoeller DA, Lambert GH, Baker AL, Schaffer DO, Josephs H (1982) The caffeine CO2 breath test: dose response and route of N-demethylation in smokers and nonsmokers. Clin Pharmacol Ther 32(2):261–269

    Article  PubMed  Google Scholar 

  • Kraus DM, Fischer JH, Reitz SJ, Kecskes SA, Yeh TF, McCulloch KM, Tung EC, Cwik MJ (1993) Alterations in theophylline metabolism during the first year of life. Clin Pharmacol Ther 54(4):351–359

    Article  PubMed  CAS  Google Scholar 

  • Kuh HJ, Shim CK (1994) Nonlinear renal excretion of theophylline and its metabolites, 1-methyluric acid and 1,3-dimethyluric acid, in rats. Arch Pharm Res 17(2):124–130

    Article  PubMed  CAS  Google Scholar 

  • Labedzki A, Buters J, Jabrane W, Fuhr U (2002) Differences in caffeine and paraxanthine metabolism between human and murine CYP1A2. Biochem Pharmacol 63(12):2159–67

    Article  PubMed  CAS  Google Scholar 

  • Landi MT, Sinha R, Lang NP, Kadlubar FF (1999) Human cytochrome P4501A2. IARC Sci Publ 148:173–195

    PubMed  CAS  Google Scholar 

  • Lane JD, Steege JF, Rupp SL, Kuhn CM (1992) Menstrual cycle effects on caffeine elimination in the human female. Eur J Clin Pharmacol 43(5):543–546

    Article  PubMed  CAS  Google Scholar 

  • Latini R, Bonati M, Castelli D, Garattini S (1978) Dose-dependent kinetics of caffeine in rats. Toxicol Lett 2(5):267–270

    Article  CAS  Google Scholar 

  • Latini R, Bonati M, Marzi E, Garattini S (1981) Urinary excretion of an uracilic metabolite from caffeine by rat, monkey and man. Toxicol Lett 7(3):267–272

    Article  PubMed  CAS  Google Scholar 

  • Latini R, Bonati M, Gaspari F, Traina GL, Jiritano L, Bortolotti A, Borzelleca JF, Tarka SM, Arnaud MJ, Garattini S (1984) Kinetics and metabolism of theobromine in male and female non-pregnant and pregnant rabbits. Toxicology 30(4):343–354

    Article  PubMed  CAS  Google Scholar 

  • Lau CE, Ma F, Falk JL (1995) Oral and IP caffeine pharmacokinetics under a chronic food-limitation condition. Pharmacol Biochem Behav 50(2):245–252

    Article  PubMed  CAS  Google Scholar 

  • Le Marchand L, Sivaraman L, Franke AA, Custer LJ, Wilkens LR, Lau AF, Cooney RV (1996) Predictors of N-acetyltransferase activity: should caffeine phenotyping and NAT2 genotyping be used interchangeably in epidemiological studies? Cancer Epidemiol Biomarkers Prev 5(6):449–455

    PubMed  Google Scholar 

  • Lee TC, Charles BG, Steer PA, Flenady VJ, Grant TC (1996) Theophylline population pharmacokinetics from routine monitoring data in very premature infants with apnoea. Br J Clin Pharmacol 41(3):191–200

    Article  PubMed  CAS  Google Scholar 

  • Lelo A, Birkett DJ, Robson RA, Miners JO (1986a) Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br J Clin Pharmacol 22(2):177–182

    Article  PubMed  CAS  Google Scholar 

  • Lelo A, Miners JO, Robson RA, Birkett DJ (1986b) Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol 22(2):183–186

    Article  PubMed  CAS  Google Scholar 

  • Lelo A, Kjellen G, Birkett DJ, Miners JO (1989) Paraxanthine metabolism in humans: determination of metabolic partial clearances and effects of allopurinol and cimetidine. J Pharmacol Exp Ther 248(1):315–319

    PubMed  CAS  Google Scholar 

  • Lelo A, Birkett DJ, Miners JO (1990) Mechanism of formation of 6-amino-5-(N-methylformylamino)-1-methyluracil and 3,7-dimethyluric acid from theobromine in the rat in vitro: involvement of P- and a cellular thiol. Xenobiotica 20(8):823–833

    Article  PubMed  CAS  Google Scholar 

  • Lenz TL, Lenz NJ, Faulkner MA (2004) Potential interactions between exercise and drug therapy. Sports Med 34(5):293–306

    Article  PubMed  Google Scholar 

  • Lesko LJ, Tabor KJ, Johnson BF (1981) Theophylline serum protein binding in obstructive airways disease. Clin Pharmacol Ther 29(6):776–781

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Granit L, Zylber-Katz E (1984) Chronopharmacokinetics of caffeine in healthy volunteers. Annu Rev Chronopharmacol 1:97–100

    CAS  Google Scholar 

  • Loi CM, Parker BM, Cusack BJ, Vestal RE (1997) Aging and drug interactions. III. Individual and combined effects of cimetidine and cimetidine and ciprofloxacin on theophylline metabolism in healthy male and female nonsmokers. J Pharmacol Exp Ther 280(2):627–637

    PubMed  CAS  Google Scholar 

  • Lowry JA, Jarrett RV, Wasserman G, Pettett G, Kauffman RE (2001) Theophylline toxicokinetics in premature newborns. Arch Pediatr Adolesc Med 155(8):934–939

    PubMed  CAS  Google Scholar 

  • Madyastha KM, Sridhar GR (1998) A novel pathway for the metabolism of caffeine by a mixed culture consortium. Biochem Biophys Res Commun 249(1):178–181

    Article  PubMed  CAS  Google Scholar 

  • Matzke GR, Frye RF, Early JJ, Straka RJ, Carson SW (2000) Evaluation of the influence of diabetes mellitus on antipyrine metabolism and CYP1A2 and CYP2D6 activity. Pharmacotherapy 20(2):182–190

    Article  PubMed  CAS  Google Scholar 

  • McLean C, Graham TE (2002) Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J Appl Physiol 93(4):1471–1478

    PubMed  CAS  Google Scholar 

  • McManus ME, Miners JO, Gregor D, Stupans I, Birkett DJ (1988) Theophylline metabolism by human, rabbit and rat liver microsomes and by purified forms of cytochrome P450. J Pharm Pharmacol 40(6):388–391

    Article  PubMed  CAS  Google Scholar 

  • McNamara PJ, Burgio D, Yoo SD (1992) Pharmacokinetics of caffeine and its demethylated metabolites in lactating adult rabbits and neonatal offspring. Predictions of breast milk to serum concentration ratios. Drug Metab Dispos 20(2):302–308

    PubMed  CAS  Google Scholar 

  • Miller GE, Radulovic LL, DeWit RH, Brabec MJ, Tarka SM, Cornish HH (1984) Comparative theobromine metabolism in five mammalian species. Drug Metab Dispos 12(2):154–160

    PubMed  CAS  Google Scholar 

  • Miners JO, Attwood J, Birkett DJ (1982) Theobromine metabolism in man. Drug Metab Dispos 10(6):672–675

    PubMed  CAS  Google Scholar 

  • Miners JO, Attwood J, Wing LM, Birkett DJ (1985) Influence of cimetidine, sulfinpyrazone, and cigarette smoking on theobromine metabolism in man. Drug Metab Dispos 13(5):598–601

    PubMed  CAS  Google Scholar 

  • Monks TJ, Caldwell J, Smith RL (1979) Influence of methylxanthine-containing foods on theophylline metabolism and kinetics. Clin Pharmacol Ther 26(4):513–524

    PubMed  CAS  Google Scholar 

  • Monks TJ, Lawrie CA, Caldwell J (1981) The effect of increased caffeine intake on the metabolism and pharmacokinetics of theophylline in man. Biopharm Drug Dispos 2(1):31–37

    Article  PubMed  CAS  Google Scholar 

  • Moore ES, Faix RG, Banagale RC, Grasela TH (1989) The population pharmacokinetics of theophylline in neonates and young infants. J Pharmacokinet Biopharm 17(1):47–66

    Article  PubMed  CAS  Google Scholar 

  • Morisot C, Simoens C, Trublin F, Lhermitte M, Gremillet C, Robert MH, Lequin P (1990) Efficacité de la caffeine transcutanée dans le traitement des apnées du prématuré. Arch Fr Pediatr 47(3):221–224

    PubMed  CAS  Google Scholar 

  • Mose T, Kjaerstad MB, Mathiesen L, Nielsen JB, Edelfors S, Knudsen LE (2008) Placental passage of benzoic acid, caffeine, and glyphosate in an ex vivo human perfusion system. J Toxicol Environ Health A 71(15):984–991

    Article  PubMed  CAS  Google Scholar 

  • Mumford GK, Benowitz NL, Evans SM, Kaminski BJ, Preston KL, Sannerud CA, Silverman K, Griffiths RR (1996) Absorption rate of methylxanthines following capsules, cola and chocolate. Eur J Clin Pharmacol 51(3–4):319–325

    Article  PubMed  CAS  Google Scholar 

  • Murphy TL, McIvor C, Yap A, Cooksley WG, Halliday JW, Powell LW (1988) The effect of smoking on caffeine elimination: implications for its use as a semiquantitative test of liver function. Clin Exp Pharmacol Physiol 15(1):9–13

    Article  PubMed  CAS  Google Scholar 

  • Murray RD, Breech L, Ailabouni A, Zingerelli J, Nahata MC (1993) Absorption of theophylline from the small and large intestine of the neonatal piglet. Eur J Drug Metab Pharmacokinet 18(4):375–379

    Article  PubMed  CAS  Google Scholar 

  • Muscat JE, Pittman B, Kleinman W, Lazarus P, Stellman SD, Richie JP Jr (2008) Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers. Biochem Pharmacol 76(7):929–937

    Article  PubMed  CAS  Google Scholar 

  • Nagel RA, Dirix LY, Hayllar KM, Preisig R, Tredger JM, Williams R (1990) Use of quantitative liver function tests-caffeine clearance and galactose elimination capacity-after orthotopic liver transplantation. J Hepatol 10(2):149–157

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, Tanaka H, Arima M (1985) The effect of caffeine ingestion on pharmacokinetics of caffeine and its metabolites after a single administration in pregnant rats. J Pharmacobiodyn 8(3):151–160

    Article  PubMed  CAS  Google Scholar 

  • Nam BH, Sohn DH, Ko G, Kim JB (1997) Effect of hepatic cirrhosis on the pharmacokinetics of theophylline in rats. Arch Pharm Res 20(4):318–323

    Article  PubMed  CAS  Google Scholar 

  • Newton R, Broughton LJ, Lind MJ, Morrisson PJ, Rogers HJ, Bradbrook ID (1981) Plasma and salivary pharmacokinetics of caffeine in man. Eur J Clin Pharmacol 21(1):45–52

    Article  PubMed  CAS  Google Scholar 

  • Obase Y, Shimoda T, Kawano T, Saeki S, Tomari S, Matsuse H, Kinoshita M, Kohno S (2003) Polymorphisms in the CYP1A2 gene and metabolism in patients with asthma. Clin Pharmacol Ther 73:468–474

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie RI (1978) Clinical pharmacokinetics of theophylline. Clin Pharmacokinet 3(4):267–293

    Article  PubMed  CAS  Google Scholar 

  • Oliveto AH, Hughes JR, Terry SY, Bickel WK, Higgins ST, Pepper SL, Fenwick JW (1991) Effects of caffeine on tobacco withdrawal. Clin Pharmacol Ther 50(2):157–164

    Article  PubMed  CAS  Google Scholar 

  • Omarini D, Barzago MM, Bortolotti A, Aramayona J, Bonati M (1991) Placental transfer of theophylline during in situ perfusion in the rabbit. J Pharmacol Methods 25(4):263–273

    Article  PubMed  CAS  Google Scholar 

  • Ou-Yang DS, Huang SL, Wang W, Xie HG, Xu ZH, Shu Y, Zhou HH (2000) Phenotypic polymorphism and gender-related differences of CYP1A2 activity in a Chinese population. Br J Clin Pharmacol 49(2):145–151

    Article  PubMed  CAS  Google Scholar 

  • Pan WJ, Goldwater DR, Zhang Y, Pilmer BL, Hunt RH (2000) Lack of a pharmacokinetic interaction between lansoprazole or pantoprazole and theophylline. Aliment Pharmacol Ther 14(3):345–352

    Article  PubMed  CAS  Google Scholar 

  • Park EJ, Ko G, Kim J, Sohn DH (1999) Biotransformation of theophylline in cirrhotic rats induced by biliary obstruction. Arch Pharm Res 22(1):60–67

    Article  PubMed  CAS  Google Scholar 

  • Park GJ, Katelaris PH, Jones DB, Seow F, Le Couteur DG, Ngu MC (2003) Validity of the 13C-caffeine breath test as a noninvasive, quantitative test of liver function. Hepatology 38(5):1227–1236

    Article  PubMed  CAS  Google Scholar 

  • Parra P, Limon A, Ferre S, Guix T, Jane F (1991) High-performance liquid chromatographic separation of caffeine, theophylline, theobromine and paraxanthine in rat brain and serum. J Chromatogr 570(1):185–190

    Article  PubMed  CAS  Google Scholar 

  • Parsons W, Neims A (1978) Effect of smoking on caffeine clearance. Clin Pharmacol Ther 24(1):40–45

    PubMed  CAS  Google Scholar 

  • Patwardhan R, Desmond P, Johnson R, Schenker S (1980) Impaired elimination of caffeine by oral contraceptive steroid. J Lab Clin Med 95(4):603–608

    PubMed  CAS  Google Scholar 

  • Perry DF, Walson PD, Blanchard J (1984) Effect of pH on theophylline transfer across the everted rat jejunum. J Pharm Sci 73(3):320–325

    Article  PubMed  CAS  Google Scholar 

  • Pons G, Blais J-C, Rey E, Plissonnier M, Richard M-O, Carrier O, D'Athis P, Moran Badoual J, Olive G (1988) Maturation of caffeine N-demethylation in infancy: a study using the 13CO2 breath test. Pediatr Res 23(6):632–636

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, Thiercelin JF, Vozeh S, Sansom L, Riegelman S (1977) The influence of cigarette smoking and sex on theophylline disposition. Am Rev Respir Dis 116(1):17–23

    PubMed  CAS  Google Scholar 

  • Rasmussen BB, Brix TH, Kyvik KO, Brøsen K (2002) The differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12:473–478

    Article  PubMed  CAS  Google Scholar 

  • Renner E, Wietholtz H, Huguenin P, Arnaud MJ, Preisig R (1984) Caffeine: a model compound for measuring liver function. Hepatology 4(1):38–46

    Article  PubMed  CAS  Google Scholar 

  • Resman BH, Blumenthal P, Jusko WJ (1977) Breast milk distribution of theobromine from chocolate. J Pediatr 91(3):477–480

    Article  PubMed  CAS  Google Scholar 

  • Rietveld EC, Broekman MM, Houben JJ, Eskes TK, van Rossum JM (1984) Rapid onset of an increase in caffeine residence time in young women due to oral contraceptive steroids. Eur J Clin Pharmacol 26(3):371–373

    Article  PubMed  CAS  Google Scholar 

  • Robson RA, Miners JO, Matthews AP, Stupans I, Meller D, McManus ME, Birkett DJ (1988) Characterisation of theophylline metabolism by human liver microsomes. Inhibition and immunochemical studies. Biochem Pharmacol 37(9):1651–1659

    Article  PubMed  CAS  Google Scholar 

  • Robson RA (1992) The effects of quinolones on xanthine pharmacokinetics. Am J Med 92(4A):22S–25S

    Google Scholar 

  • Rodopoulos N, Norman A (1996) Assessment of dimethylxanthine formation from caffeine in healthy adults: comparison between plasma and saliva concentrations and urinary excretion of metabolites. Scand J Clin Lab Invest 56(3):259–268

    Article  PubMed  CAS  Google Scholar 

  • Rodopoulos N, Höjvall L, Norman A (1996) Elimination of theobromine metabolites in healthy adults. Scand J Clin Lab Invest 56(4):373–383

    Article  PubMed  CAS  Google Scholar 

  • Rodopoulos N, Norman A (1997) Elimination of theophylline metabolites in healthy adults. Scand J Clin Lab Invest 57(3):233–240

    Article  PubMed  CAS  Google Scholar 

  • Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44(2):578–588

    Article  PubMed  CAS  Google Scholar 

  • Rost KL, Roots I (1994) Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios: coincidence with plasma clearance and breath test. Clin Pharmacol Ther 55(4):402–411

    Article  PubMed  CAS  Google Scholar 

  • Ryu JY, Song IS, Sunwoo YE, Shon JH, Liu KH, Cha IJ, Shin JG (2007) Development of the “Inje cocktail” for high-throughput evaluation of five human cytochrome P450 isoforms in vivo. Clin Pharmacol Ther 82(5):531–540

    Article  PubMed  CAS  Google Scholar 

  • Sachse KT, Jackson EK, Wisniewski SR, Gillespie DG, Puccio AM, Clark RS, Dixon CE, Kochanek PM (2008) Increases in cerebrospinal fluid caffeine concentration are associated with favorable outcome after severe traumatic brain injury in humans. J Cereb Blood Flow Metab 28(2):395–401

    Article  PubMed  CAS  Google Scholar 

  • Salomon G (1883) Über Paraxanthine und Heteroxanthin. Ber Dtsch Chem Ges 18:3406–3410

    Article  Google Scholar 

  • Sarkar MA, Hunt C, Guzelian PS, Karnes HT (1992) Characterization of human liver cytochromes P-450 involved in theophylline metabolism. Drug Metab Dispos 20(1):31–37

    PubMed  CAS  Google Scholar 

  • Sarkar MA, Jackson BJ (1994) Theophylline N-demethylations as probes for P4501A1 and P4501A2. Drug Metab Dispos 22(6):827–834

    PubMed  CAS  Google Scholar 

  • Saruwatari J, Nakagawa K, Shindo J, Tajiri T, Fujieda M, Yamazaki H, Kamataki T, Ishizaki T (2002) A population phenotyping study of three drug-metabolizing enzymes in Kyushu, Japan, with use of the caffeine test. Clin Pharmacol Ther 72(2):200–208

    Article  PubMed  CAS  Google Scholar 

  • Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects. Eur J Clin Pharmacol 44(3):295–298

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakajima M, Honda A, Konishi T, Miyazaki H (2007) Pharmacokinetics of theophylline in Guinea pig tears. Drug Metab Pharmacokinet 22(3):169–177

    Article  PubMed  CAS  Google Scholar 

  • Schaad HJ, Renner EL, Wietholtz H, Arnaud MJ, Preisig R (1995) Caffeine demethylation measured by breath analysis in experimental liver injury in the rat. J Hepatol 22(1):82–87

    Article  PubMed  CAS  Google Scholar 

  • Schlaeffer F, Engelberg I, Kaplanski J, Danon A (1984) Effect of exercise and environmental heat on theophylline kinetics. Respiration 45(4):438–442

    Article  PubMed  CAS  Google Scholar 

  • Schmider J, Brockmöller J, Arold G, Bauer S, Roots I (1999) Simultaneous assessment of CYP3A4 and CYP1A2 activity in vivo with alprazolam and caffeine. Pharmacogenetics 9(6):725–734

    Article  PubMed  CAS  Google Scholar 

  • Schrenk D (1998) Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics. Biochem Pharmacol 5(8):1155–1162

    Google Scholar 

  • Scott NR, Chakraborty J, Marks V (1984) Determination of caffeine, theophylline and theobromine in serum and saliva using high-performance liquid chromatography. Ann Clin Biochem 21(Pt 2):120–124

    PubMed  CAS  Google Scholar 

  • Scott NR, Chakraborty J, Marks V (1986) Urinary metabolites of caffeine in pregnant women. Br J Clin Pharmacol 22(4):475–478

    Article  PubMed  CAS  Google Scholar 

  • Scott NR, Stambuk D, Chakraborty J, Marks V, Morgan MY (1988) Caffeine clearance and biotransformation in patients with chronic liver disease. Clin Sci 74(4):377–384

    PubMed  CAS  Google Scholar 

  • Scott NR, Stambuk D, Chakraborty J, Marks V, Morgan MY (1989) The pharmacokinetics of caffeine and its dimethylxanthine metabolites in patients with chronic liver disease. Br J Clin Pharmacol 27(2):205–213

    Article  PubMed  CAS  Google Scholar 

  • Shaw LM, Fields L, Mayock R (1982) Factors influencing theophylline serum protein binding. Clin Pharmacol Ther 32(4):490–496

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P- 450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270:414–423

    PubMed  CAS  Google Scholar 

  • Shively CA, Tarka SM Jr (1983) Theobromine metabolism and pharmacokinetics in pregnant and nonpregnant Sprague-Dawley rats. Toxicol Appl Pharmacol 67(3):376–382

    Article  PubMed  CAS  Google Scholar 

  • Shively CA, Tarka SM Jr (1984) Methylxanthine composition and consumption patterns of cocoa and chocolate products. In: Spiller GA (ed) The methylxanthine beverages in foods: chemistry, consumption, and health effects. Alan R Liss, New York, pp 149–178

    Google Scholar 

  • Shively CA, Tarka SM Jr, Arnaud MJ, Dvorchik BH, Passananti GT, Vesell ES (1985) High levels of methylxanthines in chocolate do not alter theobromine disposition. Clin Pharmacol Ther 37(4):415–424

    Article  PubMed  CAS  Google Scholar 

  • Siegel IA, Ben-Aryeh H, Gozal D, Colin AA, Szargel R, Laufer D (1990) Comparison of unbound and total serum theophylline concentrations with those of stimulated and unstimulated saliva in asthmatic children. Ther Drug Monit 12(5):460–464

    Article  PubMed  CAS  Google Scholar 

  • Simons FE, Rigatto H, Simons KJ (1981) Pharmacokinetics of theophylline in neonates. Semin Perinatol 5(4):337–345

    PubMed  CAS  Google Scholar 

  • Sjöberg P, Olofsson IM, Lundqvist T (1992) Validation of different microdialysis methods for the determination of unbound steady-state concentrations of theophylline in blood and brain tissue. Pharm Res 9(12):1592–1598

    Article  PubMed  Google Scholar 

  • Soyka LF, Neese AL, Main D, Main E (1981) Studies of caffeine and theophylline in the neonate. Semin Perinatol 5(4):332–336

    PubMed  CAS  Google Scholar 

  • Sperber AD (1991) Toxic interaction between fluvoxamine and sustained release theophylline in an 11-year-old boy. Drug Saf 6(6):460–462

    Article  PubMed  CAS  Google Scholar 

  • Spigset O, Hägg S, Söderström E, Dahlqvist R (1999a) The paraxanthine:caffeine ratio in serum or in saliva as a measure of CYP1A2 activity: when should the sample be obtained? Pharmacogenetics 9(3):409–412

    Article  PubMed  CAS  Google Scholar 

  • Spigset O, Hägg S, Söderström E, Dahlqvist R (1999b) Lack of correlation between fluvoxamine clearance and CYP1A2 activity as measured by systemic caffeine clearance. Eur J Clin Pharmacol 54(12):943–946

    Article  PubMed  CAS  Google Scholar 

  • Ståhle L (1991) Drug distribution studies with microdialysis: I. Tissue dependent difference in recovery between caffeine and theophylline. Life Sci 49(24):1835–1842

    Article  PubMed  Google Scholar 

  • Ståhle L, Segersvärd S, Ungerstedt U (1991) Drug distribution studies with microdialysis. II. Caffeine and theophylline in blood, brain and other tissues in rats. Life Sci 49(24):1843–1852

    Article  PubMed  Google Scholar 

  • Statland BE, Demas TJ (1980) Serum caffeine half-lives. Healthy subjects vs. patients having alcoholic hepatic disease. Am J Clin Pathol 73(3):90–393

    Google Scholar 

  • Straka RJ, Burkhardt RT, Lang NP, Hadsall KZ, Tsai MY (2006) Discordance between N-acetyltransferase 2 phenotype and genotype in a population of Hmong subjects. J Clin Pharmacol 46(7):802–11

    Article  PubMed  CAS  Google Scholar 

  • Streetman DS, Bleakley JF, Kim JS, Nafziger AN, Leeder JS, Gaedigk A, Gotschall R, Kearns GL, Bertino JS Jr (2000) Combined phenotypic assessment of CYP1A2, CYP2C19, CYP2D6, CYP3A, N-acetyltransferase-2, and xanthine oxidase with the “Cooperstown cocktail”. Clin Pharmacol Ther 68(4):375–383

    Article  PubMed  CAS  Google Scholar 

  • Takata K, Saruwatari J, Nakada N, Nakagawa M, Fukuda K, Tanaka F, Takenaka S, Mihara S (2006) Phenotype-genotype analysis of CYP1A2 in Japanese patients receiving oral theophylline therapy. Eur J Clin Pharmacol 62(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Ishikawa A, Yamamoto Y, Uchida E, Kobayashi S, Yasuhara H, Misawa S (1992a) Simplified approach for evaluation of hepatic drug-oxidizing capacity with a simultaneous measurement of caffeine and its primary demethylated metabolites in carbon tetrachloride-intoxicated rats. Xenobiotica 22(5):535–541

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Ishikawa A, Yamamoto Y, Osada A, Tsuji K, Fukao K, Misawa S, Iwasaki Y (1992b) A simple useful method for the determination of hepatic function in patients with liver cirrhosis using caffeine and its three major dimethylmetabolites. Int J Clin Pharmacol Ther Toxicol 30(9):336–341

    PubMed  CAS  Google Scholar 

  • Tanaka E, Ishikawa A, Yamamoto Y, Osada A, Tsuji K, Fukao K, Iwasaki Y (1993) Comparison of hepatic drug-oxidizing activity after simultaneous administration of two probe drugs, caffeine and trimethadione, to human subjects. Pharmacol Toxicol 72(1):31–33

    Article  PubMed  CAS  Google Scholar 

  • Tanaka E, Ishikawa A, Misawa S (1995) Changes in the metabolism of three model substrates catalysed by different P isozymes when administered as a cocktail to the carbon tetrachloride-intoxicated rat. Xenobiotica 25(10):1111–1118

    Article  PubMed  CAS  Google Scholar 

  • Tang BK, Grant DM, Kalow W (1983) Isolation and identification of 5-acetylamino-6-formylamino-3-methyluracil as a major metabolite of caffeine in man. Drug Metab Dispos 11(3):218–220

    PubMed  CAS  Google Scholar 

  • Tang BK, Zubovits T, Kalow W (1986) Determination of acetylated caffeine by high-performance exclusion chromatography. J Chromatogr 375(1):170–173

    CAS  Google Scholar 

  • Tang BK, Zhou Y, Kadar D, Kalow W (1994) Caffeine as a probe for CYP1A2 activity: potential influence of renal factors on urinary phenotypic trait measurements. Pharmacogenetics 4(3):117–224

    Article  PubMed  CAS  Google Scholar 

  • Tang-Liu DD, Riegelman S (1981) Metabolism of theophylline to caffeine in adults. Res Commun Chem Pathol Pharmacol 34(3):371–380

    PubMed  CAS  Google Scholar 

  • Tang-Liu DDS, Williams RL, Reigelman S (1983) Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther 224(1):180–185

    PubMed  CAS  Google Scholar 

  • Tarka SM Jr (1982) The toxicology of cocoa and methylxanthines: a review of the literature. Crit Rev Toxicol 9(4):275–312

    Article  PubMed  CAS  Google Scholar 

  • Tarka SM Jr, Arnaud MJ, Dvorchik BH, Vesell ES (1983) Theobromine kinetics and metabolic disposition. Clin Pharmacol Ther 34(4):546–555

    Article  PubMed  CAS  Google Scholar 

  • Tassaneeyakul W, Birkett DJ, McManus ME, Tassaneeyakul W, Veronese ME, Andersson T, Tukey RH, Miners JO (1994) Caffeine metabolism by human hepatic cytochromes P450: contributions of 1A2, 2E1 and 3A isoforms. Biochem Pharmacol 47(10):1767–1776

    Article  PubMed  CAS  Google Scholar 

  • Teichmann AT (1990) Influence of oral contraceptives on drug therapy. Am J Obstet Gynecol 163(6 Pt 2):2208–2213

    PubMed  CAS  Google Scholar 

  • Teunissen MW, Brorens IO, Geerlings JM, Breimer DD (1985) Dose-dependent elimination of theophylline in rats. Xenobiotica 15(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Tornatore KM, Kanarkowski R, McCarthy TL, Gardner MJ, Yurchak AM, Jusko WJ (1982) Effect of chronic oral contraceptive steroids on theophylline disposition. Eur J Clin Pharmacol 23(2):129–134

    Article  PubMed  CAS  Google Scholar 

  • Trang JM, Blanchard J, Conrad KA, Harrison GG (1985) Relationship between total body clearance of caffeine and urine flow rate in elderly men. Biopharm Drug Dispos 6(1):51–56

    Article  PubMed  CAS  Google Scholar 

  • Trnavská Z (1990) Theophylline protein binding. Arzneimittelforschung 40(2 Pt 1):166–169

    PubMed  Google Scholar 

  • Tröger U, Meyer FP (1995) Influence of endogenous and exogenous effectors on the pharmacokinetics of theophylline focus on biotransformation. Clin Pharmacokinet 28(4):287–314

    Article  PubMed  Google Scholar 

  • Tserng KY, Takieddine FN, King KC (1983) Developmental aspects of theophylline metabolism in premature infants. Clin Pharmacol Ther 33(4):522–528

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi K, Kotegawa T, Matsuki S, Tanaka Y, Ishii Y, Kodama Y, Kuranari M, Miyakawa I, Nakano S (2001) The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther 70(2):121–125

    Article  PubMed  CAS  Google Scholar 

  • Tukker JJ, Meulendijk AJ (1991) Is a diurnal rhythm in bioavailability caused by a rhythm in intestinal absorption? Eur J Drug Metab Pharmacokinet Spec No 3:66–70

    Google Scholar 

  • Upton RA (1991) Pharmacokinetic interactions between theophylline and other medication (Part I). Clin Pharmacokinet 20(1):66–80

    Article  PubMed  CAS  Google Scholar 

  • Vickroy TW, Chang SK, Chou CC (2008) Caffeine-induced hyperactivity in the horse: comparisons of drug and metabolite concentrations in blood and cerebrospinal fluid. J Vet Pharmacol Ther 31(2):156–166

    Article  PubMed  CAS  Google Scholar 

  • Vistisen K, Loft S, Poulsen HE (1991) Cytochrome P450 IA2 activity in man measured by caffeine metabolism: effect of smoking, broccoli and exercise. Adv Exp Biol Biol 283:407–411

    Article  CAS  Google Scholar 

  • Vistisen K, Poulsen HE, Loft S (1992) Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis 13(9):1561–1568

    Article  PubMed  CAS  Google Scholar 

  • Walton K, Dorne JL, Renwick AG (2001) Uncertainty factors for chemical risk assessment: interspecies differences in the in vivo pharmacokinetics and metabolism of human CYP1A2 substrates. Food Chem Toxicol 39(7):667–680

    Article  PubMed  CAS  Google Scholar 

  • Warszawski D, Gorodischer R, Moses SW, Bark H (1977) Caffeine pharmacokinetics in young and adult dogs. Biol Neonate 32(3–4):138–142

    PubMed  CAS  Google Scholar 

  • Warszawski D, Ben-Zvi Z, Gorodischer R, Arnaud MJ, Bracco I (1982) Urinary metabolites of caffeine in young dogs. Drug Metab Dispos 10(4):424–428

    PubMed  CAS  Google Scholar 

  • Weinberger M, Ginchansky E (1977) Dose-dependent kinetics of theophylline disposition in asthmatic children. J Pediatr 91(5):820–824

    Article  PubMed  CAS  Google Scholar 

  • Wietholtz H, Voegelin M, Arnaud MJ, Bircher J, Preisig R (1981) Assessment of cytochrome P-448 dependent liver enzyme system by a caffeine breath test. Eur J Clin Pharmacol 21(1):53–59

    Article  PubMed  CAS  Google Scholar 

  • Wijnands GJ, Cornel JH, Martea M, Vree TB (1990) The effect of multiple-dose oral lomefloxacin on theophylline metabolism in man. Chest 98(6):1440–1444

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM, Pollard I (1993) Accumulation of theophylline, theobromine and paraxanthine in the fetal rat brain following a single oral dose of caffeine. Brain Res Dev Brain Res 75(2):193–199

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Witter JD, Spongberg AL, Czajkowski KP (2009) Occurrence of selected pharmaceuticals in an agricultural landscape, western Lake Erie basin. Water Res 43(14):3407–416

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Rajesan R, Harper P, Kim RB, Lonnerdal B, Yang M, Uematsu S, Hutson J, Watson-MacDonell J, Ito S (2005) Induction of P 1A by cow milk-based formula: a comparative study between human milk and formula. Br J Pharmacol 146(2):296–305

    Article  PubMed  CAS  Google Scholar 

  • Yang KH, Lee JH, Lee MG (2008) Effects of CYP inducers and inhibitors on the pharmacokinetics of intravenous theophylline in rats: involvement of CYP1A1/2 in the formation of 1,3-DMU. J Pharm Pharmacol 60(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Yano I, Tanigawara Y, Yasuhara M, Mikawa H, Hori R (1993) Population pharmacokinetics of theophylline. I: Intravenous infusion to children in the acute episode of asthma. Biol Pharm Bull 16(1):59–62

    Article  PubMed  CAS  Google Scholar 

  • Yesair DW, Branfman AR, Callahan MM (1984) Human disposition and some biochemical aspects of methylxanthines. Prog Clin Biol Res 158:215–233

    PubMed  CAS  Google Scholar 

  • Zandvliet AS, Huitema AD, de Jonge ME, den Hoed R, Sparidans RW, Hendriks VM, van den Brink W, van Ree JM, Beijnen JH (2005) Population pharmacokinetics of caffeine and its metabolites theobromine, paraxanthine and theophylline after inhalation in combination with diacetylmorphine. Basic Clin Pharmacol Toxicol 96(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Zevin S, Benowitz NL (1999) Drug interactions with tobacco smoking. An update. Clin Pharmacokinet 36(6):425–438

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z-Y, Kaminsky LS (1995) Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol 50(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Ou-Yang DS, Chen XP, Huang SL, Tan ZR, He N, Zhou HH (2001) Assessment of cytochrome P450 activity by a five-drug cocktail approach. Clin Pharmacol Ther 70(5):455–461

    Article  PubMed  CAS  Google Scholar 

  • Zysset T, Wietholtz H (1991) Pharmacokinetics of caffeine in patients with decompensated type I and type II diabetes mellitus. Eur J Clin Pharmacol 41(5):449–452

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice J. Arnaud .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Arnaud, M.J. (2011). Pharmacokinetics and Metabolism of Natural Methylxanthines in Animal and Man. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_3

Download citation

Publish with us

Policies and ethics