Skip to main content

Arthropod Regeneration

  • Chapter
  • First Online:
Arthropod Biology and Evolution

Abstract

Regeneration or restoration of a lost body part may occur at different levels: it can involve a part of the trunk, a specific organ or structure (such as a limb), tissues (such as the gut lining) or cells (such as axons or muscle fibres) (Bely and Nyberg 2009).The vast majority of studies on arthropod regeneration are about limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeloos M (1932) La régénération et les problèmes de la morphogenèse. Gauthier-Villars, Paris

    Google Scholar 

  • Adiyodi RG (1972) Wound healing and regeneration in the crab Paratelphusa hydrodromus. Int Rev Cytol 32:257–289

    Article  PubMed  CAS  Google Scholar 

  • Agar WE (1930) A statistical study of regeneration in two species of Crustacea. J Exp Biol 7:349–369

    Google Scholar 

  • Alsop DW (1978) Comparative analysis of the intrinsic leg musculature of the American cockroach, Periplaneta americana (L.). J Morph 158:199–242

    Article  Google Scholar 

  • Angelini DR, Kaufman TC (2005a) Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 283:409–423

    Article  PubMed  CAS  Google Scholar 

  • Angelini DR, Kaufman TC (2005b) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77

    Article  PubMed  CAS  Google Scholar 

  • Bando T, Mito T, Maeda Y, Nakamura T, Ito F, Watanabe T, Ohuchi H, Noji S (2009) Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration. Development 136:2235–2245

    Article  PubMed  CAS  Google Scholar 

  • Bando T, Mito T, Nakamura T, Ohuchi H, Noji S (2011) Regulation of leg size and shape: involvement of the Dachsous-Fat signalling pathway. Dev Dyn 240:1028–1041

    Article  PubMed  Google Scholar 

  • Becker A, Peters W (1985) Fine structure of the midgut gland of Phalangium opilio (Chelicerata, Phalangida). Zoomorphol 105:317–325

    Article  Google Scholar 

  • Belacortu Y, Paricio N (2011) Drosophila as a model of wound healing and tissue regeneration in vertebrates. Dev Dyn 240:2379–2404

    Article  PubMed  CAS  Google Scholar 

  • Bely AE (2010) Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol 50:515–527

    Article  PubMed  Google Scholar 

  • Bely AE, Nyberg KG (2009) Evolution of animal regeneration: Re-emerging of a field. Trends Ecol Evol 25:161–170

    Article  PubMed  Google Scholar 

  • Bergantiños C, Corominas M, Serras F (2010a) Cell death-induced regeneration in wing imaginal discs requires JNK signalling. Development 137:1169–1179

    Article  PubMed  CAS  Google Scholar 

  • Bergantiños C, Vilana X, Corominas M, Serras F (2010b) Imaginal discs: renaissance of a model for regenerative biology. BioEssays 32:207–217

    Article  PubMed  Google Scholar 

  • Bliss DE (1960) Autotomy and regeneration. In: Waterman TH (ed) The physiology of Crustacea, vol 1. Academy Press, New York, pp 561–589

    Google Scholar 

  • Bodenstein D (1953) Regeneration. In: Roeder KD (ed) Insect physiology. Wiley, New York, pp 866–878

    Google Scholar 

  • Bodenstein D (1955) Contributions to the problem of regeneration in insects. J Exp Zool 129:209–224

    Article  Google Scholar 

  • Bordage E (1905) Recherches anatomiques et biologiques sur l’anatomie et régénération chez diverses arthropodes. Bull scient Fr Belg 39:307–454

    Google Scholar 

  • Bosch M, Bishop S-A, Baguñà J, Couso J-P (2010) Leg regeneration in Drosophila abridges the normal developmental program. Int J Dev Biol 54:1241–1250

    Article  PubMed  Google Scholar 

  • Buck C, Edwards JS (1990) The effect of appendage and scale loss on instar duration in adult firebrats, Thermobia domestica (Thysanura). J Exp Biol 151:341–347

    PubMed  CAS  Google Scholar 

  • Bullière D, Bullière F (1985) Regeneration. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 2. Pergamon Press, Oxford, pp 371–424

    Google Scholar 

  • Cameron JA (1926) Regeneration in Scutigera forceps. J Exp Zool 46:169–179

    Article  Google Scholar 

  • Campbell FL, Priestley JD (1970) Flagellar annuli of Blattella germanica (Dictyoptera: Blattellidae)—changes in their number and dimensions during postembryonic development. Ann Entomol Soc Am 63:81–88

    Google Scholar 

  • Chajec Ł, Rost-Roszkowska MM, Vilimova J, Sosinka A (2012) Ultrastructure and regeneration of midgut epithelial cells in Lithobius forficatus (Chilopoda, Lithobiidae). Invertebr Biol 131:119–132

    Article  Google Scholar 

  • Clare AS, Lumb G, Clare PA, Costolow JD Jr (1990) A morphological study of wound response and telson regeneration in postlarval Limulus polyphemus (L.). Invertebr Reprod Dev 17:77–87

    Article  Google Scholar 

  • Cooper RL (1998) Development of sensory processes during limb regeneration in adult crayfish. J Exp Biol 201:1745–1752

    PubMed  CAS  Google Scholar 

  • Corley LS, Lavine MD (2006) A review of insect stem cell types. Semin Cell Dev Biol 17:510–517

    Article  PubMed  CAS  Google Scholar 

  • de Godoy JAP, Fontanetti CS (2010) Diplopods as bioindicators of soils: analysis of midgut of individuals maintained in substract [sic] containing sewage sludge. Water Air Soil Pollut 210:389–398

    Article  CAS  Google Scholar 

  • Durica DS, Wu X, Anilkumar G, Hopkins PM, Chung AC (2002) Characterization of crab EcR and RXR homologs and expression during limb regeneration and oocyte maturation. Mol Cell Endocrinol 189:59–76

    Article  PubMed  CAS  Google Scholar 

  • Durica DS, Kupfer D, Najar F, Lai H, Tang Y, Griffin K, Hopkins PM, Roe B (2006) EST library sequencing of genes expressed during early limb regeneration in the fiddler crab and transcriptional responses to ecdysteroid exposure in limb bud explants. Integr Comp Biol 46:948–964

    Article  PubMed  CAS  Google Scholar 

  • El Haj AJ (1999) Regulation of muscle growth and sarcomeric protein gene expression over the intermolt cycle. Am Zool 39:570–579

    Google Scholar 

  • Ernsting G, Fokkema DS (1983) Antennal damage and regeneration in springtails (Collembola) in relation to predation. Neth J Zool 33:476–484

    Article  Google Scholar 

  • Filimonova SA (2009) The ultrastructure investigation of the midgut in the quill mite Syringophilopsis fringilla (Acari, Trombidiformes: Syringophilidae). Arthropod Struct Dev 38:303–313

    Article  PubMed  CAS  Google Scholar 

  • Fleming PA, Muller D, Bateman PW (2007) Leave it all behind: a taxonomic perspective of autotomy in invertebrates. Biol Rev 82:481–510

    Article  PubMed  Google Scholar 

  • Freeman JA (1983) Spine regeneration in the larvae of the crab, Rhithropanopeus harrisii. J Exp Zool 225:443–448

    Article  Google Scholar 

  • Galko MJ, Krasnow MA (2004) Cellular and genetic analysis of wound healing in Drosophila larvae. PLoS Biol 2:e239. doi:10.1371/journal.pbio.0020239

    Article  PubMed  CAS  Google Scholar 

  • Giorgianni M, Patel NH (2005) Conquering land, air and water: the evolution and development of arthropod appendages. In: Briggs DEG (ed) Evolving form and function: fossils and development, Peabody Museum of natural history. Yale University, New Haven, pp 159–180

    Google Scholar 

  • Goss RJ (1969) Principles of regeneration. Academic Press, New York and London

    Google Scholar 

  • Greven H (1976) Some ultrastructural observations on the midgut epithelium of Isohypsibius augusti (Murray, 1907) (Eutardigrada). Cell Tiss Res 166:339–351

    CAS  Google Scholar 

  • Grusche FA, Degoutin JL, Richardson HE, Harvey KF (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350:255–266

    Article  PubMed  CAS  Google Scholar 

  • Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  PubMed  CAS  Google Scholar 

  • Harvey R, Burrows MT, Speirs R (2003) Cirral regeneration following non-lethal predation in two intertidal barnacle species. J Mar Biol Ass UK 83:1229–1231

    Article  Google Scholar 

  • Holland CA, Skinner DM (1976) Interactions between molting and regeneration in the land crab. Biol Bull 150:222–240

    Article  PubMed  CAS  Google Scholar 

  • Hopkins PM (1982) Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biol Bull 163:301–319

    Article  Google Scholar 

  • Hopkins PM (2001) Limb regeneration in the fiddler crab, Uca pugilator: hormonal and growth factor control. Am Zool 41:389–398

    Article  CAS  Google Scholar 

  • Hopkins PM, Chung AC-K, Durica DS (1999) Limb regeneration in the fiddler crab, Uca pugilator: histological, physiological and molecular consideration. Am Zool 39:513–526

    Google Scholar 

  • Igelmund P (1987) Morphology, sense organs, and regeneration of the forelegs (whips) of the whip spider Heterophrynus elaphus (Arachnida, Amblypygi). J Morph 193:75–89

    Article  Google Scholar 

  • Jegla TC (1982) A review of the molting physiology of the trilobite larva of Limulus. In: Bonaventura J, Bonaventura C, Tesh S (eds) Physiology and biology of horseshoe crabs: Studies on normal and environmentally stressed animals. Alan R Liss, New York, pp 83–101

    Google Scholar 

  • Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:483–493

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Edgar BA (2012) Intestinal stem cell function in Drosophila and mice. Curr Opin Gen Dev 22:354–360

    Article  CAS  Google Scholar 

  • Joly R, Herbaut C (1968) Sur la régénération oculaire chez Lithobius forficatus L. (Myriapode Chilopode). Arch Zool Exp Gén 109:591–612

    Google Scholar 

  • Kaars C, Greenblatt S, Fourtner CR (1984) Patterned regeneration of internal femoral structures in the cockroach, Periplaneta americana L. J Exp Biol 230:141–144

    CAS  Google Scholar 

  • Kahn AT, Weis JS, Saharig CE, Polo AE (1993) Effect of tributylin on mortality and telson regeneration of grass shrimp, Palaemonetes pugio. Bull Environ Contam Toxicol 50:152–157

    Google Scholar 

  • Klepal W, Gruber D, Pflugfelder B (2008) Natural cyclic degeneration by a sequence of programmed cell death modes in Semibalanus balanoides (Linnaeus, 1767) (Crustacea, Cirripedia, Thoracica). Zoomorphol 127:49–58

    Article  Google Scholar 

  • Knobloch CA, Steel CGH (1988) Interactions between limb regeneration and ecdysteroid titres in last larval instar Rhodnius prolixus (Hemiptera). J Insect Physiol 34:507–514

    Article  CAS  Google Scholar 

  • Kocian V (1930) Un cas d’hétéromorphose chez Argulus foliaceus L. Arch Zool Exp Gen 70:23–27

    Google Scholar 

  • Kojima T (2004) The mechanism of Drosophila leg development along the proximodistal axis. Dev Growth Differ 46:115–129

    Article  PubMed  CAS  Google Scholar 

  • Korschelt E (1907) Regeneration und Transplantation. Fischer, Jena

    Google Scholar 

  • Kraus ML, Weis JS (1988) Differences in the effects of mercury on telson regeneration in two populations of the grass shrimp Palaemonetes pugio. Bull Environ Contam Toxicol 17:115–120

    Article  CAS  Google Scholar 

  • Krüger S, Haller B, Lakes-Harlan R (2011) Regeneration in the auditory system of nymphal and adult bush crickets Tettigonia viridissima. 36:235–246

    Google Scholar 

  • Loeb J (1905) Studies in general physiology. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Lüdke J, Lakes-Harlan R (2008) Regeneration of the tibia and somatotopy of regenerated hair sensilla in Schistocerca gregaria (Forskål). Arthropod Struct Dev 37:210–220

    Article  PubMed  Google Scholar 

  • Lumb G, Clare AS, Costlow JD (1991) Cheliped regeneration in the megalopa of the mud crab, Rhithropanopeus harrisii (Gould). Invertebr Reprod Dev 20:87–96

    Article  Google Scholar 

  • Lüscher M (1948) The regeneration of legs in Rhodnius prolixus (Hemiptera). J Exp Biol 25:334–343

    PubMed  Google Scholar 

  • Maleville A, De Reggi M (1981) Influence of leg regeneration on ecdysteroid titres in Acheta larvae. J Insect Physiol 27:35–40

    Article  CAS  Google Scholar 

  • Maruzzo D, Minelli A (2011) Post-embryonic development of amphipod crustacean pleopods and the patterning of arthropod limbs. Zool Anz 250:32–45

    Article  Google Scholar 

  • Maruzzo D, Bonato L, Brena C, Fusco G, Minelli A (2005) Appendage loss and regeneration in arthropods: a comparative view. In: Koenemann S, Jenner R (eds) Crustacea and arthropod relationships, Crustacean issues 16. CRC Press, Boca Raton, pp 215–245

    Chapter  Google Scholar 

  • Maruzzo D, Minelli A, Ronco M, Fusco G (2007) Growth and regeneration of the second antennae of Asellus aquaticus (Isopoda) in the context of arthropod antennal segmentation. J Crust Biol 27:184–196

    Article  Google Scholar 

  • Maruzzo D, Egredzija M, Minelli A, Fusco G (2008) Segmental pattern formation following amputations in the flagellum of the second antennae of Asellus aquaticus (Crustacea, Isopoda). Ital J Zool 75:225–231

    Article  Google Scholar 

  • McCarthy JF, Skinner DM (1977) Interruption of proecdysis by autotomy of partially regenerated limbs in the land crab, Gecarcinus lateralis. Dev Biol 61:299–310

    Article  PubMed  CAS  Google Scholar 

  • McClure KD, Schubiger G (2008) A screen for genes that function in leg disc regeneration in Drosophila melanogaster. Mech Dev 125:67–80

    Article  PubMed  CAS  Google Scholar 

  • McNamara KJ, Tuura ME (2011) Evidence for segment polarity during regeneration in the Devonian asteropygine trilobite Greenops widderensis. J Paleontol 85:106–110

    Article  Google Scholar 

  • Mees J, Fockedy N, Dewicke A, Janssen CR, Sorbe J-C (1995) Aberrant individuals of Neomysis integer and other Mysidacea: intersexuality and variable telson morphology. Neth J Aquat Ecol 29:161–166

    Article  Google Scholar 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479

    Article  PubMed  CAS  Google Scholar 

  • Minelli A (2003) The development of animal form. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Minelli A, Maruzzo D, Fusco G (2010) Multi-scale relationships between number and size in the evolution of arthropod body features. Arthropod Struct Dev 39:468–477

    Article  PubMed  Google Scholar 

  • Mito T, Inoue Y, Kimura S, Miyawaki K, Niwa N, Shinmyo Y, Ohuchi H, Noji S (2002) Involvement of hedgehog, wingless, and dpp in the initiation of proximodistal axis formation during the regeneration of insect legs, a verification of the modified boundary model. Mech Dev 114:27–35

    Article  PubMed  CAS  Google Scholar 

  • Moffett S (1987) Muscles proximal to the fracture plane atrophy after limb autotomy in decapod crustaceans. J Exp Zool 244:485–490

    Article  Google Scholar 

  • Morgan TH (1901) Regeneration. Macmillan, New York

    Google Scholar 

  • Mykles DL (1999) Proteolytic processes underlying molt-induced claw muscle atrophy in decapod crustaceans. Am Zool 39:541–551

    CAS  Google Scholar 

  • Nagy LM, Williams TA (2001) Comparative limb development as a tool for understanding the evolutionary diversification of limbs in arthropods: challenging the modularity paradigm. In: Wagner GP (ed) The character concept in evolutionary biology. Academic Press, San Diego, pp 455–488

    Chapter  Google Scholar 

  • Nakamura T, Mito T, Tanaka Y, Bando T, Ohuchi H, Noji S (2007) Involvement of the canonical Wnt/Wingless signaling in determination of the proximodistal positional values within the leg segment of the cricket Gryllus bimaculatus. Dev Growth Differ 49:79–88

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Mito T, Bando T, Ohuchi H, Noji S (2008) Dissecting insect leg regeneration through RNA interference. Cell Mol Life Sci 65:64–72

    Article  PubMed  CAS  Google Scholar 

  • Nardi JB, Bee CM (2012) Regenerative cells and the architecture of beetle midgut epithelia. J Morph 273:1010–1020

    Article  PubMed  Google Scholar 

  • Nardi JB, Bee CM, Miller LA (2010) Stem cells of the beetle midgut epithelium. J Insect Physiol 56:296–303

    Article  PubMed  CAS  Google Scholar 

  • Needham AE (1952) Regeneration and wound healing. Methuen, London

    Google Scholar 

  • Needham AE (1965) Regeneration in the Arthropoda and its endocrine control. In: Kiortsis V, Trampusch HAL (eds) Regeneration in animals and related problems. North-Holland, Amsterdam, pp 283–323

    Google Scholar 

  • Nguyen Duy-Jacquemin M (1972) Régénération chez les larves et les adultes de Polyxenus lagurus (Diplopode, Pénicillate). C R Hebdo Séances Acad Sci Paris D 274:1323–1326

    Google Scholar 

  • Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381

    PubMed  CAS  Google Scholar 

  • Njihout HF, Grunert LW (1988) Color pattern regulation after surgery on the wing disks of Precis coenia (Lepidoptera: Nymphalidae). Development 102:377–385

    Google Scholar 

  • Nüesch H (1968) Role of nervous system in insect morphogenesis and regeneration. Annu Rev Entomol 13:27–44

    Article  Google Scholar 

  • Ober KA, Jockusch EL (2006) The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 294:391–405

    Article  PubMed  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    Article  PubMed  CAS  Google Scholar 

  • Pastre S (1960) Sur la régénération de l’œil de l’Isopode Idotea baltica (Aud.). C R Acad Sci Fr 250:3738–3739

    CAS  Google Scholar 

  • Pearse J, Govind CK (2002) Remodeling of the proximal segment of crayfish motor nerves following transaction. J Comp Neurol 450:61–72

    Article  Google Scholar 

  • Petit G (1974) Sur les modalités de la croissance et la régénération des antennes de larves de Polydesmus angustus Latzel. Symp Zool Soc London 32:301–315

    Google Scholar 

  • Prpic N-M, Damen WGM (2008) Arthropod appendages: a prime example for the evolution of morphological diversity and innovation. In: Minelli A, Fusco G (eds) Evolving pathways. Cambridge University Press, Cambridge, pp 381–398

    Chapter  Google Scholar 

  • Przibram H (1909) Regeneration. Deuticke, Leipzig

    Google Scholar 

  • Randall JB (1981) Regeneration and autotomy exhibited by the black widow spider, Latrodectus variolus Walckenaer. Wilhelm Roux’ Arch Dev Biol 190:230–232

    Article  Google Scholar 

  • Read AT, Govind CK (1998) Cell types in regenerating claws of the snapping shrimp, Alpheus heterochelis. Can J Zool 76:1080–1090

    Article  Google Scholar 

  • Reddy BV, Irvine KD (2008) The Fat and Warts signaling pathways: new insights into their regulation, mechanism and conservation. Development 135:2827–2838

    Article  PubMed  CAS  Google Scholar 

  • Repiso A, Bergantiños C, Corominas M, Serras F (2011) Tissue repair and regeneration in Drosophila imaginal discs. Dev Growth Differ 53:177–185

    Article  PubMed  Google Scholar 

  • Roberts B, Wentworth SL, Kotzman M (1983) The levels of ecdysteroids in uninjured and leg-autotomized nymphs of Blattella germanica (L.). J Insect Physiol 29:679–685

    Article  CAS  Google Scholar 

  • Rockett CL, Woodring JP (1972) Comparative studies of acarine limb regeneration, apolysis, and ecdysis. J Insect Physiol 18:2319–2336

    Article  Google Scholar 

  • Rosin R (1964) On regeneration in scorpions. Isr J Zool 13:177–183

    Google Scholar 

  • Rost MM (2006a) Ultrastructural changes in the midgut epithelium in Podura aquatica L. (Insecta, Collembola, Arthropleona) during regeneration. Arthropod Struct Dev 35:69–76

    Article  PubMed  Google Scholar 

  • Rost MM (2006b) Comparative studies on regeneration of the midgut epithelium in Lepisma saccarina and Thermobia domestica. Ann Entomol Soc Am 99:910–916

    Article  Google Scholar 

  • Rost-Roszkowska MM (2008) Ultrastructural changes in the midgut epithelium of Acheta domesticus (Orthoptera: Gryllidae) during degeneration and regeneration. Ann Entomol Soc Am 101:151–158

    Article  Google Scholar 

  • Rost-Roszkowska MM, Undrul A (2008) Fine structure and differentiation of the midgut epithelium of Allacma fusca (Insecta, Collembola, Symphypleona). Zool Stud 47:200–206

    Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Swiatek P (2007) Ultrastructural changes in the midgut epithelium of the first larva of Allacma fusca (Insecta, Collembola, Symphypleona). Invertebr Biol 126:366–372

    Article  Google Scholar 

  • Rost-Roszkowska MM, Jansta P, Vilimova J (2010a) Fine structure of the midgut epithelium in two Archaeognatha, Lepismachilis notata and Machilis hrabei (Insecta), in relation to its degeneration and regeneration. Protoplasma 247:91–101

    Article  PubMed  CAS  Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Klag J, Migula P, Mesjasz-Przybyłowicz J, Przybyłowicz W (2010b) Differentiation and regenerative cells in the midgut epithelium of Epilachna cf. nylanderi (Mulsant 1850) (Insecta, Coleoptera, Coccinellidae). Folia Biol 58:209–216

    Article  Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Chajec Ł (2010c) Fine structure of the midgut epithelium of Atelura formicaria (Hexapoda: Zygentoma: Ateluridae), with special reference to its regeneration and degeneration. Zool Stud 49:10–18

    Google Scholar 

  • Rost-Roszkowska MM, Poprawa I, Wójtowicz M, Kaczmarek Ł (2011) Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis. Protoplasma 248:405–414

    Article  PubMed  Google Scholar 

  • Rost-Roszkowska MM, Vilimova J, Sosinka A, Skudlik J, Franzetti E (2012) The role of autophagy in the midgut epithelium of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca). Arthropod Struct Dev 41:271–279

    Article  PubMed  CAS  Google Scholar 

  • Sandeman RE, Sandeman DC (1996) Pre- and postembryonic development, growth and turnover of olfactory receptor neurons in crayfish antennules. J Exp Biol 199:2409–2418

    PubMed  Google Scholar 

  • Schafer R (1973) Postembryonic development in the antenna of the cockroach, Leucophaea maderae: Growth, regeneration and the development of the adult pattern of sense organs. J Exp Zool 183:353–364

    Article  Google Scholar 

  • Schmiege DL, Ridgway RL, Moffett SB (1992) Ultrastructure of autotomy-induced atrophy of muscles in the crab Carcinus maenas. Can J Zool 70:841–851

    Article  Google Scholar 

  • Schubiger M, Sustar A, Schubiger G (2010) Regeneration and transdetermination: the role of wingless and its regulation. Dev Biol 347:315–324

    Article  PubMed  CAS  Google Scholar 

  • Seifert AW, Monaghan JR, Smith MD, Pasch B, Stier AC, Michonneau F, Maden M (2012) The influence of fundamental traits on mechanisms controlling appendage regeneration. Biol Rev 87:330–345

    Article  PubMed  Google Scholar 

  • Shah MV, Namigai EKO, Suzuki Y (2011) The role of canonical Wnt signaling in leg regeneration and metamorphosis in the red flour beetle Tribolium castaneum. Mech Dev 128:342–358

    Article  PubMed  CAS  Google Scholar 

  • Shaw VK, Bryant PJ (1974) Regeneration of appendages in the large milkweed bag, Oncopeltus fasciatus. J Insect Physiol 20:1849–1857

    Article  PubMed  CAS  Google Scholar 

  • Skinner DM (1985) Molting and regeneration. In: Bliss DE (ed) The biology of Crustacea, vol 9. Academic Press, New York, pp 43–146

    Google Scholar 

  • Skinner DM, Graham DE (1972) Loss of limbs as a stimulus to ecdysis in Brachyura (true crabs). Biol Bull 143:222–233

    Article  Google Scholar 

  • Smith-Bolton R, Worley M, Kanda H, Hariharan I (2009) Regenerative growth in Drosophila imaginal discs is regulated by Wingless and Myc. Dev Cell 16:797–809

    Article  PubMed  CAS  Google Scholar 

  • Šobotník J, Alberti G, Weyda F, Hubert J (2008) Ultrastructure of the digestive tract in Acarus siro (Acari: Acaridida). J Morph 269:54–71

    Article  PubMed  Google Scholar 

  • Stern M, Scheiblich H, Eickhoff R, Didwischus N, Bicker G (2012) Regeneration of olfactory afferent axons in the locust brain. J Comp Neurol 520:679–693

    Article  PubMed  CAS  Google Scholar 

  • Steuellet P, Cate HS, Derby CD (2000) A spatiotemporal wave of turnover and functional maturation of olfactory receptor neurons in the spiny lobster Panulirus argus. J Neurosci 20:3282–3294

    Google Scholar 

  • Strand M, Micchelli CA (2011) Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci USA 108:17696–17701

    Article  PubMed  CAS  Google Scholar 

  • Švácha P (1995) The larva of Scraptia fuscula (P.W.J. Müller) (Coleoptera: Scraptiidae): autotomy and regeneration of the caudal appendage. In: Pkaluk J, Ślipiński SA (eds) Biology, phylogeny, and classification of Coleoptera. Muzeum i Instytut Zoologii PAN, Warszawa, pp 473–489

    Google Scholar 

  • Tanaka A, Ross MH (1996) Regeneration of tarsomeres in the fused tarsi trait of the German cockroach. Jpn J Ent 64:429–441

    Google Scholar 

  • Tanaka A, Akahane H, Ban Y (1992) The problem of the number of tarsomeres in the regenerated cockroach leg. J Exp Zool 262:61–70

    Article  PubMed  CAS  Google Scholar 

  • Tapon N, Harvey KF, Bell DW, Wahrer DCR, Schiripo TA, Haber DA, Hariharan IK (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110:467–478

    Article  PubMed  CAS  Google Scholar 

  • Theopold U, Schmidt O, Söderhäll K, Dushay MS (2004) Coagulation in arthropods: defence, wound closure and healing. Trends Immunol 25:289–294

    Article  PubMed  CAS  Google Scholar 

  • Truby PR (1983) Blastema formation and cell division during cockroach limb regeneration. J Embryol Exp Morph 75:151–164

    PubMed  CAS  Google Scholar 

  • Truby PR (1985) Separation of wound healing from regeneration in the cockroach leg. J Embryol Exp Morph 85:177–190

    PubMed  CAS  Google Scholar 

  • Vachon M (1957) La régénération appendiculaire chez le scorpions (Arachnides). C R Hebdo Séances Acad Sci Paris 244:2556–2559

    Google Scholar 

  • Vafopoulou X (2009) Mechanisms of wound repair in crayfish. Invertebr Surviv J 6:125–137

    Google Scholar 

  • Vernet G, Charmantier-Daures M (1994) Mue, autotomie et régénération. In: Grassé PP (ed) Traité de Zoologie, Tome 7, Fascicule 1. Masson, Paris, pp 153–194

    Google Scholar 

  • Vorontsova MA, Liosner LD (1960) Asexual propagation and regeneration. Pergamon Press, London

    Google Scholar 

  • Williams TA (2004) The evolution and development of crustacean limbs: an analysis of limb homologies. In: Scholtz G (ed) Evolutionary developmental biology of Crustacea, Crustacean issues 15. AA Balkema, Lisse, pp 169–193

    Google Scholar 

  • Wu X, Hopkins PM, Palli SR, Durica DS (2004) Crustacean retinoid-X-receptor isoforms: distinctive DNA binding and receptor–receptor interaction with a cognate ecdysteroid receptor. Mol Cell Endocrinol 218:21–38

    Article  PubMed  CAS  Google Scholar 

  • Yu XL, Chang ES, Mykles DL (2002) Characterization of limb autotomy factor proecdysis (LAFpro), isolated from limb regenerates, that suspends molting in the land crab Gecarcinus lateralis. Biol Bull 202:204–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

In our effort to keep the reference list within a reasonable length, we often preferred to cite reviews or research articles that include references to previous useful works, instead of citing all original works directly. We apologize with all the authors whose original, valuable work was not directly cited here. Frank D. Ferrari, Giuseppe Fusco, Alessandro Minelli and H. Frederik Nijhout provided useful comments on earlier drafts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Maruzzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maruzzo, D., Bortolin, F. (2013). Arthropod Regeneration. In: Minelli, A., Boxshall, G., Fusco, G. (eds) Arthropod Biology and Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36160-9_7

Download citation

Publish with us

Policies and ethics