Skip to main content

Resveratrol: From Basic Studies to Bedside

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Abstract

Plants produce a remarkable amount of low molecular mass natural products endowed with a large array of pivotal biological activities. Among these molecules, resveratrol (3,5,4’-trihydroxystilbene) has been identified as an important modulator of cell phenotype with a complex and pleiotropic mode of action. Extensive literature regarding its activity, mainly employing cellular models, suggests that this polyphenol controls cell proliferation, induces differentiation, and activates apoptosis and autophagy. The compound also modulates angiogenesis and inflammation. Similarly, studies on implanted cancers and chemical-induced tumors confirm the potential chemotherapeutical interest of the compound. Likewise, several reports clearly demonstrated, in animal models, that the compound might positively affect the development and evolution of chronic diseases including type 2 diabetes, obesity, coronary heart disease, metabolic syndrome, and neurogenerative pathologies. Finally, a number of investigations stated that the toxicity of the molecule is scarce. Despite these promising observations, few clinical trials have yet been performed to evaluate the effectiveness of the molecule both in prevention and treatment of human chronic disease. Preliminary findings therefore suggest the need for more extensive clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AKT:

cellular homolog of the transforming v-Akt protein

AMP:

Adenosine monophosphate

AMPK:

AMP-activated protein kinase

BSA:

Body surface area

CD95:

Cluster of differentiation 95

cdc2 kinase:

Cell division control protein 2 kinase

Egr-1:

Early growth response protein 1

FOXO:

Forkhead box class O

HIF:

Hypoxia-inducible factor

IGF-1:

Insulin-like growth factor 1

MAP kinase:

Mitogen-activated protein kinase

NAD:

Nicotinamide adenine dinucleotide

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

p21Cip1 :

21 kDa protein cyclin-dependent kinase inhibitor protein 1

PDE:

Phosphodiesterase

PGC-1α:

Peroxisome proliferator–activated receptor gamma coactivator 1-alpha

PI3K:

Phosphatidylinositol 3-kinases

PKC:

Protein kinase C

Sirt-1:

Sirtuin 1

TRAIL:

TNF-related apoptosis-inducing ligand

References

  1. Ahmad KA, Clement MV, Hanif IM et al (2004) Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res 64:1452–1459

    Article  PubMed  CAS  Google Scholar 

  2. Alex D, Leong EC, Zhang ZJ et al (2010) Resveratrol derivative, trans-3,5,49-trimethoxystilbene, exerts antiangiogenic and vascular disrupting effects in zebrafish through the downregulation of VEGFR2 and cell cycle modulation. J Cell Biochem 109:339–346

    PubMed  CAS  Google Scholar 

  3. Alkhalaf M, El-Mowafy A, Renno W et al (2008) Resveratrol-induced apoptosis in human breast cancer cells is mediated primarily through the caspase-3-dependent pathway. Arch Med Res 39:162–168

    Article  PubMed  CAS  Google Scholar 

  4. Almeida L, Vaz-da-Silva M, Falcao A et al (2009) Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res 53:7–15

    Article  Google Scholar 

  5. Asou H, Koshizuka K, Kyo T et al (2002) Resveratrol a natural product derived from grapes, is a new inducer of differentiation in human myeloid leukemias. Int J Hematol 75:528–533

    Article  PubMed  CAS  Google Scholar 

  6. Aziz MH, Afaq F, Ahmad N (2005) Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem Photobiol 81:25–31

    Article  PubMed  CAS  Google Scholar 

  7. Aziz MH, Nihal M, Fu VX et al (2006) Resveratrol-caused apoptosis of human prostate carcinoma LNCaP cells is mediated via modulation of phosphatidylinositol 3’-kinase/Akt pathway and Bcl-2 family proteins. Mol Cancer Ther 5:1335–1341

    Article  PubMed  CAS  Google Scholar 

  8. Banerjee Mustafi S, Chakraborty PK, Raha S (2010) Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PLoS ONE 5:e8719

    Article  PubMed  CAS  Google Scholar 

  9. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  PubMed  CAS  Google Scholar 

  10. Baur JA, Pearson KJ, Price NL et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  PubMed  CAS  Google Scholar 

  11. Beher D, Wu J, Cumine S et al (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    Article  PubMed  CAS  Google Scholar 

  12. Bhardwaj A, Sethi G, Vadhan-Raj S et al (2004) Isorhapontigenin and resveratrol suppress oxLDL-induced proliferation and activation of ERK1/2 mitogen-activated protein kinases of bovine aortic smooth muscle cells. Biochem Pharmacol 67:777–785

    Article  CAS  Google Scholar 

  13. Bhardwaj A, Sethi G, Vadhan-Raj S et al (2007) Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 109:2293–2302

    Article  PubMed  CAS  Google Scholar 

  14. Boissy P, Andersen TL, Abdallah BM et al (2005) Resveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation. Cancer Res 65:9943–9952

    Article  PubMed  CAS  Google Scholar 

  15. Boocock DJ, Faust GE, Patel KR (2007) Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Canc Epidemiol Biomarkers Prev 16:1246–1252

    Article  CAS  Google Scholar 

  16. Bråkenhielm E, Cao R, Cao Y (2001) Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 15:1798–1800

    PubMed  Google Scholar 

  17. Brown VA, Patel KR, Viskaduraki M et al (2010) Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin-like growth factor axis. Cancer Res 70:9003–9011

    Article  PubMed  CAS  Google Scholar 

  18. Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29:980–1015

    Article  PubMed  CAS  Google Scholar 

  19. Cao Y, Fu ZD, Wang F et al (2005) Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants. J Asian Nat Prod Res 7:205–213

    Article  PubMed  CAS  Google Scholar 

  20. Cao Z, Fang J, Xia C et al (2004) trans-3,4,5’-Trihydroxystilbene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res 10:5253–5263

    Article  PubMed  CAS  Google Scholar 

  21. Chan JY, Phoo MS, Clement MV et al (2008) Resveratrol displays converse dose-related effects on 5-fluorouracil-evoked colon cancer cell apoptosis: the roles of caspase-6 and p53. Cancer Biol Ther 7:1305–1312

    Article  PubMed  CAS  Google Scholar 

  22. Chan WK, Delucchi AB (2000) Resveratrol, a red wine constituent, is a mechanism-based inactivator of cytochrome P450 3A4. Life Sci 67:3103–3012

    Article  PubMed  CAS  Google Scholar 

  23. Chen Q, Ganapathy S, Singh KP et al (2010) Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells. PLoS ONE 5:e15288

    Article  PubMed  CAS  Google Scholar 

  24. Chen ZH, Hurh YJ, Na HK et al (2004) Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells. Carcinogenesis 25:2005–2013

    Article  PubMed  CAS  Google Scholar 

  25. Ciolino HP, Daschner PJ, Yeh GC (1998) Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor. Cancer Res 58:5707–5712

    PubMed  CAS  Google Scholar 

  26. Clément MV, Hirpara JL, Chawdhury SH et al (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92:996–1002

    PubMed  Google Scholar 

  27. Cucciolla V, Borriello A, Oliva A et al (2007) Resveratrol: from basic science to the clinic. Cell Cycle 6:2495–2510

    Article  PubMed  CAS  Google Scholar 

  28. Dai H, Kustigian L, Carney D et al (2010) SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 285:32695–32703

    Article  PubMed  CAS  Google Scholar 

  29. Della Ragione F, Cucciolla V, Borriello A et al (1998) Resveratrol arrests the cell division cycle at S/G2 phase transition. Biochem Biophys Res Commun 250:53–58

    Article  CAS  Google Scholar 

  30. Della Ragione F, Cucciolla V, Criniti V et al (2003) p21Cip1 gene expression is modulated by Egr1: a novel regulatory mechanism involved in the resveratrol antiproliferative effect. J Biol Chem 278:23360–23368

    Article  CAS  Google Scholar 

  31. El-Mowafy AM, White RE (1999) Resveratrol inhibits MAPK activity and nuclear translocation in coronary artery smooth muscle: reversal of endothelin-1 stimulatory effects. FEBS Lett 451:63–67

    Article  PubMed  CAS  Google Scholar 

  32. Elliott PJ, Walpole S, Morelli L et al (2009) Resveratrol/SRT501. Sirtuin SIRT1 activator, Treatment of type 2 diabetes. Drugs Fut 34:291–295

    Article  CAS  Google Scholar 

  33. Estrov Z, Shishodia S, Faderl S et al (2003) Resveratrol blocks interleukin-1beta-induced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 102:987–995

    Article  PubMed  CAS  Google Scholar 

  34. Floreani M, Napoli E, Quintieri L et al (2003) Oral administration of trans-resveratrol to guinea pigs increases cardiac DT-diaphorase and catalase activities, and protects isolated atria from menadione toxicity. Life Sci 72:2741–2750

    Article  PubMed  CAS  Google Scholar 

  35. Fulda S, Debatin KM (2005) Resveratrol-mediated sensitisation to TRAIL-induced apoptosis depends on death receptor and mitochondrial signalling. Eur J Cancer 41:786–798

    Article  PubMed  CAS  Google Scholar 

  36. George J, Singh M, Srivastava AK et al (2011) Resveratrol and black tea polyphenol combination synergistically suppress mouse skin tumors growth by inhibition of activated MAPKs and p53. PLoS ONE 6:e23395

    Article  PubMed  CAS  Google Scholar 

  37. Guarente L (1999) Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23:281–285

    Article  PubMed  CAS  Google Scholar 

  38. Haider UG, Roos TU, Kontaridis MI et al (2005) Resveratrol inhibits angiotensin II- and epidermal growth factor-mediated Akt activation: role of Gab1 and Shp2. Mol Pharmacol 68:41–48

    PubMed  CAS  Google Scholar 

  39. Haider UG, Sorescu D, Griendling KK et al (2002) Resveratrol suppresses angiotensin II-induced Akt/protein kinase B and p70 S6 kinase phosphorylation and subsequent hypertrophy in rat aortic smooth muscle cells. Mol Pharmacol 62:772–777

    Article  PubMed  CAS  Google Scholar 

  40. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  41. Hayashibara T, Yamada Y, Nakayama S et al (2002) Resveratrol induces downregulation in survivin expression and apoptosis in HTLV-1-infected cell lines: a prospective agent for adult T cell leukemia chemotherapy. Nutr Cancer 44:193–201

    Article  PubMed  Google Scholar 

  42. Holmes-McNary M, Baldwin AS Jr (2000) Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkappaB kinase. Cancer Res 60:3477–3483

    PubMed  CAS  Google Scholar 

  43. Howells LM, Berry DP, Elliott PJ et al (2011) Phase I randomised double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases—safety, pharmacokinetics and pharmacodynamics. Cancer Prev Res (Phila) 4:1419–1425

    Article  CAS  Google Scholar 

  44. Howitz KT, Bitterman KJ, Cohen HY et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  PubMed  CAS  Google Scholar 

  45. Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–222

    Article  PubMed  CAS  Google Scholar 

  46. Kaminski J, Lançon A, Aires V et al (2012) Resveratrol initiates differentiation of mouse skeletal muscle-derived C2C12 myoblasts. Biochem Pharmacol pii S0006–2952(12):00579–5. doi:10.1016/j.bcp.2012.08.023

    Google Scholar 

  47. Ko YC, Chang CL, Chien HF et al (2011) Resveratrol enhances the expression of death receptor Fas/CD95 and induces differentiation and apoptosis in anaplastic large-cell lymphoma cells. Cancer Lett 309:46–53

    Article  PubMed  CAS  Google Scholar 

  48. Kundu JK, Shin YK, Kim SH et al (2006) Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-kappaB in mouse skin by blocking IkappaB kinase activity. Carcinogenesis 27:1465–1474

    Article  PubMed  CAS  Google Scholar 

  49. la Porte C, Voduc N, Zhang G et al (2010) Steady-State pharmacokinetics and tolerability of trans-resveratrol 2000 mg twice daily with food, quercetin and alcohol (ethanol) in healthy human subjects. Clin Pharmacokinet 49:449–454

    Article  PubMed  Google Scholar 

  50. Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  PubMed  CAS  Google Scholar 

  51. Lee JE, Safe S (2001) Involvement of a post-transcriptional mechanism in the inhibition of CYP1A1 expression by resveratrol in breast cancer cells. Biochem Pharmacol 62:1113–1124

    Article  PubMed  CAS  Google Scholar 

  52. Lee MH, Choi BY, Kundu JK et al (2009) Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 69:7449–7458

    Article  PubMed  CAS  Google Scholar 

  53. Leong CW, Wong CH, Lao SC et al (2007) Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts. Biochem Biophys Res Commun 360:173–180

    Article  PubMed  CAS  Google Scholar 

  54. Li F, Gong Q, Dong H et al (2012) Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18:27–33

    Article  PubMed  Google Scholar 

  55. Lin HY, Tang HY, Keating T et al (2008) Resveratrol is pro-apoptotic and thyroid hormone is anti-apoptotic in glioma cells: both actions are integrin and ERK mediated. Carcinogenesis 29:62–69

    Article  PubMed  CAS  Google Scholar 

  56. Mader I, Wabitsch M, Debatin KM et al (2010) Identification of a novel proapoptotic function of resveratrol in fat cells: SIRT1—independent sensitization to TRAIL-induced apoptosis. FASEB J 24:1997–2009

    Article  PubMed  CAS  Google Scholar 

  57. Manna SK, Mukhopadhyay A, Aggarwal BB (2000) Resveratrol suppresses TNF-induced activation of nuclear transcription factors NF-kappa B, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J Immunol 164:6509–6519

    PubMed  CAS  Google Scholar 

  58. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  59. Miller RA, Harrison DE, Astle CM et al (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201

    Article  PubMed  CAS  Google Scholar 

  60. Mohan J, Gandhi AA, Bhavya BC et al (2006) Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 281:17599–17611

    Article  PubMed  CAS  Google Scholar 

  61. Morselli E, Mariño G, Bennetzen MV et al (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629

    Article  PubMed  CAS  Google Scholar 

  62. Nguyen AV, Martinez M, Stamos MJ et al (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Canc Manag Res 1:25–37

    CAS  Google Scholar 

  63. Opipari AW Jr, Tan L, Boitano AE et al (2004) Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 64:696–703

    Article  PubMed  CAS  Google Scholar 

  64. Park JW, Choi YJ, Suh SI et al (2001) Bcl-2 overexpression attenuates resveratrol-induced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis 22:1633–1639

    Article  PubMed  CAS  Google Scholar 

  65. Park SJ, Ahmad F, Philp A et al (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP Phosphodiesterases. Cell 148:421–433

    Article  PubMed  CAS  Google Scholar 

  66. Patel KR, Brown VA, Jones DJ et al (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70:7392–7399

    Article  PubMed  CAS  Google Scholar 

  67. Pearson KJ, Baur JA, Lewis KN et al (2008) Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 8:157–168

    Article  PubMed  CAS  Google Scholar 

  68. Pöhland T, Wagner S, Mahyar-Roemer M et al (2006) Bax and Bak are the critical complementary effectors of colorectal cancer cell apoptosis by chemopreventive resveratrol. Anticancer Drugs 17:471–478

    Article  PubMed  CAS  Google Scholar 

  69. Pozo-Guisado E, Lorenzo-Benayas MJ, Fernández-Salguero PM (2004) Resveratrol modulates the phosphoinositide 3-kinase pathway through an estrogen receptor alpha-dependent mechanism: relevance in cell proliferation. Int J Cancer 109:167–173

    Article  PubMed  CAS  Google Scholar 

  70. Pozo-Guisado E, Merino JM, Mulero-Navarro S et al (2005) Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int J Cancer 115:74–84

    Article  PubMed  CAS  Google Scholar 

  71. Price NL, Gomes AP, Ling AJ et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  PubMed  CAS  Google Scholar 

  72. Puissant A, Auberger P (2010) AMPK- and p62/SQSTM1-dependent autophagy mediate Resveratrol-induced cell death in chronic myelogenous leukemia. Autophagy 6:655–657

    Article  PubMed  Google Scholar 

  73. Puissant A, Robert G, Fenouille N et al (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70:1042–1052

    Article  PubMed  CAS  Google Scholar 

  74. Reybier K, Perio P, Ferry G et al (2011) Insights into the redox cycle of human quinone reductase 2. Free Radic Res 45:1184–1195

    Article  PubMed  CAS  Google Scholar 

  75. Roy P, Kalra N, Prasad S et al (2009) Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3 K/AKT signaling pathways. Pharm Res 26:211–217

    Article  PubMed  CAS  Google Scholar 

  76. Scarlatti F, Maffei R, Beau I et al (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 8:1318–1329

    Article  Google Scholar 

  77. Shankar S, Chen Q, Siddiqui I et al (2007) Sensitization of TRAIL-resistant LNCaP cells by resveratrol (3, 49, 5 tri-hydroxystilbene): molecular mechanisms and therapeutic potential. J Mol Signal 2:7

    Article  PubMed  CAS  Google Scholar 

  78. Shankar S, Siddiqui I, Srivastava RK (2007) Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol Cell Biochem 304:273–285

    Article  PubMed  CAS  Google Scholar 

  79. She QB, Huang C, Zhang Y et al (2002) Involvement of c-jun NH(2)-terminal kinases in resveratrol-induced activation of p53 and apoptosis. Mol Carcinog 33:244–250

    Article  PubMed  CAS  Google Scholar 

  80. Shih A, Zhang S, Cao HJ et al (2004) Inhibitory effect of epidermal growth factor on resveratrol-induced apoptosis in prostate cancer cells is mediated by protein kinase C-alpha. Mol Cancer Ther 3:1355–1364

    PubMed  CAS  Google Scholar 

  81. Smith TG, Robbins PA, Ratcliffe PJ (2008) The human side of hypoxia-inducible factor. Br J Haematol 141:325–334

    Article  PubMed  CAS  Google Scholar 

  82. Soleas GJ, Yan J, Goldberg DM (2001) Measurement of trans-resveratrol, (1)-catechin, and quercetin in rat and human blood and urine by gas chromatography with mass selective detection. Methods Enzymol 335:130–145

    Article  PubMed  CAS  Google Scholar 

  83. Soleas GJ, Yan J, Goldberg DM (2001) Ultrasensitive assay for three polyphenols (catechin, quercetin and resveratrol) and their conjugates in biological fluids utilizing gas chromatography with mass selective detection. J Chromatogr B Biomed Sci Appl 757:161–172

    Article  PubMed  CAS  Google Scholar 

  84. Spanier G, Xu H, Xia N et al (2009) Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). J Physiol Pharmacol 60:111–116

    PubMed  Google Scholar 

  85. Srivastava RK, Unterman TG, Shankar S (2010) FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol. Mol Cell Biochem 337:201–212

    Article  PubMed  CAS  Google Scholar 

  86. Stewart JR, Christman KL, O’Brian CA (2000) Effects of resveratrol on the autophosphorylation of phorbol ester-responsive protein kinases: inhibition of protein kinase D but not protein kinase C isozyme autophosphorylation. Biochem Pharmacol 60:1355–1359

    Article  PubMed  CAS  Google Scholar 

  87. Subbaramaiah K, Chung WJ, Michaluart P et al (1998) Resveratrol inhibits cyclooxygenase-2 transcription and activity in phorbol ester-treated human mammary epithelial cells. J Biol Chem 273:21875–21882

    Article  PubMed  CAS  Google Scholar 

  88. Szewczuk LM, Forti L, Stivala LA et al (2004) Resveratrol is a peroxidase-mediated inactivator of COX-1 but not COX-2: a mechanistic approach to the design of COX-1 selective agents. J Biol Chem 279:22727–22737

    Article  PubMed  CAS  Google Scholar 

  89. Takaoka M (1939) Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Nippon Kagaku Kaishi 60:1090–1100

    Article  Google Scholar 

  90. Tang HY, Shih A, Cao HJ et al (2006) Resveratrol-induced cyclooxygenase-2 facilitates p53-dependent apoptosis in human breast cancer cells. Mol Cancer Ther 5:2034–2042

    Article  PubMed  CAS  Google Scholar 

  91. Timmers S, Konings E, Bilet L et al (2011) Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab 14:612–622

    Article  PubMed  CAS  Google Scholar 

  92. Tinhofer I, Bernhard D, Senfter M et al (2001) Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J 15:1613–1615

    PubMed  CAS  Google Scholar 

  93. Tomé-Carneiro J, Gonzálvez M, Larrosa M et al (2012) One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol 110:356–363

    Article  PubMed  CAS  Google Scholar 

  94. Trincheri NF, Nicotra G, Follo C et al (2007) Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis 28:922–931

    Article  PubMed  CAS  Google Scholar 

  95. Ulrich S, Huwiler A, Loitsch S et al (2007) De novo ceramide biosynthesis is associated with resveratrol-induced inhibition of ornithine decarboxylase activity. Biochem Pharmacol 74:281–289

    Article  PubMed  CAS  Google Scholar 

  96. Vang O, Ahmad N, Baile CA et al (2011) What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 6:e19881

    Article  PubMed  CAS  Google Scholar 

  97. Walle T, Hsieh F, DeLegge MH et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  PubMed  CAS  Google Scholar 

  98. Wang Y, Romigh T, He X et al (2010) Resveratrol regulates the PTEN/AKT pathway through androgen receptor dependent and -independent mechanisms in prostate cancer cell lines. Hum Mol Genet 19:4319–4329

    Article  PubMed  CAS  Google Scholar 

  99. Wong RH, Howe PR, Buckley JD et al (2011) Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr Metab Cardiovasc Dis 21:851–856

    Article  PubMed  CAS  Google Scholar 

  100. Woo JH, Lim JH, Kim YH et al (2004) Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23:1845–1853

    Article  PubMed  CAS  Google Scholar 

  101. Wu H, Liang X, Fang Y et al (2008) Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1 alpha expression in colon carcinoma cells. Biomed Pharmacother 62:613–621

    Article  PubMed  CAS  Google Scholar 

  102. Wu Y, Li X, Zhu JX et al (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19:163–174

    Article  PubMed  CAS  Google Scholar 

  103. Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Mol Endocrinol 21:1745–1755

    Article  PubMed  CAS  Google Scholar 

  104. Yu LJ, Wu ML, Li H et al (2008) Inhibition of STAT3 expression and signaling in resveratrol-differentiated medulloblastoma cells. Neoplasia 10:736–744

    Article  PubMed  CAS  Google Scholar 

  105. Yu R, Hebbar V, Kim DW et al (2001) Resveratrol inhibits phorbol ester and UV-induced activator protein 1 activation by interfering with mitogen-activated protein kinase pathways. Mol Pharmacol 60:217–224

    PubMed  CAS  Google Scholar 

  106. Zamora-Ros R, Urpi-Sarda M, Lamuela-Raventós RM et al (2012) High urinary levels of resveratrol metabolites are associated with a reduction in the prevalence of cardiovascular risk factors in high-risk patients. Pharmacol Res 65:615–620

    Article  PubMed  CAS  Google Scholar 

  107. Zhang F, Liu J, Shi JS (2010) Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation. Eur J Pharmacol 636:1–7

    Article  PubMed  CAS  Google Scholar 

  108. Zhang S, Cao HJ, Davis FB et al (2004) Oestrogen inhibits resveratrol-induced post-translational modification of p53 and apoptosis in breast cancer cells. Br J Cancer 91:178–185

    Article  PubMed  CAS  Google Scholar 

  109. Zhao K, Harshaw R, Chai X et al (2004) Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD + -dependent Sir2 histone/protein deacetylases. Proc Natl Acad Sci USA 101:8563–8568

    Article  PubMed  CAS  Google Scholar 

  110. Zykova TA, Zhu F, Zhai X et al (2008) Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 47:797–805

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fulvio Della Ragione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borriello, A. et al. (2014). Resveratrol: From Basic Studies to Bedside. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics