Skip to main content

Adult Skeletal Muscle Stem Cells

  • Chapter
  • First Online:
Book cover Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 56))

Abstract

Skeletal muscles in vertebrates have a phenomenal regenerative capacity. A muscle that has been crushed can regenerate fully both structurally and functionally within a month. Remarkably, efficient regeneration continues to occur following repeated injuries. Thousands of muscle precursor cells are needed to accomplish regeneration following acute injury. The differentiated muscle cells, the multinucleated contractile myofibers, are terminally withdrawn from mitosis. The source of the regenerative precursors is the skeletal muscle stem cells—the mononucleated cells closely associated with myofibers, which are known as satellite cells. Satellite cells are mitotically quiescent or slow-cycling, committed to myogenesis, but undifferentiated. Disruption of the niche after muscle damage results in their exit from quiescence and progression towards commitment. They eventually arrest proliferation, differentiate, and fuse to damaged myofibers or make de novo myofibers. Satellite cells are one of the well-studied adult tissue-specific stem cells and have served as an excellent model for investigating adult stem cells. They have also emerged as an important standard in the field of ageing and stem cells. Several recent reviews have highlighted the importance of these cells as a model to understand stem cell biology. This chapter begins with the discovery of satellite cells as skeletal muscle stem cells and their developmental origin. We discuss transcription factors and signalling cues governing stem cell function of satellite cells and heterogeneity in the satellite cell pool. Apart from satellite cells, a number of other stem cells have been shown to make muscle and are being considered as candidate stem cells for amelioration of muscle degenerative diseases. We discuss these “offbeat” muscle stem cells and their status as adult skeletal muscle stem cells vis-a-vis satellite cells. The ageing context is highlighted in the concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    PubMed  CAS  Google Scholar 

  • Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–81

    PubMed  CAS  Google Scholar 

  • Asakura A, Hirai H, Kablar B, Morita S, Ishibashi J, Piras BA, Christ AJ, Verma M, Vineretsky KA, Rudnicki MA (2007) Increased survival of muscle stem cells lacking the MyoD gene after transplantation into regenerating skeletal muscle. Proc Natl Acad Sci U S A 104:16552–7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–34

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ben-Yair R, Kalcheim C (2005) Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development 132:689–701

    PubMed  CAS  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–35

    PubMed  CAS  Google Scholar 

  • Bischoff R (1990) Interaction between satellite cells and skeletal muscle fibers. Development 109:943–52

    PubMed  CAS  Google Scholar 

  • Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30:232–42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–80

    PubMed  CAS  Google Scholar 

  • Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RC, Kyba M (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26:3194–204

    PubMed  CAS  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–10

    PubMed  CAS  Google Scholar 

  • Brack AS, Conboy IM, Conboy MJ, Shen J, Rando TA (2008) A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for normal adult myogenesis. Cell Stem Cell 2:50–9

    PubMed  CAS  Google Scholar 

  • Brohl D, Vasyutina E, Czajkowski MT, Griger J, Rassek C, Rahn HP, Purfurst B, Wende H, Birchmeier C (2012) Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. Dev Cell 23:469–81

    PubMed  Google Scholar 

  • Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L’Honore A, Vallette S, Brue T, Figarella-Branger D, Meij B, Drouin J (2012) The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Genes Dev 26:2299–310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–7

    PubMed  CAS  Google Scholar 

  • Carlson ME, Hsu M, Conboy IM (2008) Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528–32

    PubMed  CAS  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    PubMed  CAS  Google Scholar 

  • Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S (2014) Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Dev Cell (in press)

    Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–7

    PubMed  CAS  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–4

    PubMed  CAS  Google Scholar 

  • Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, Rossi FM (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–32

    PubMed  CAS  Google Scholar 

  • Cornelison DDW, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    PubMed  CAS  Google Scholar 

  • Cornelison DD, Olwin BB, Rudnicki MA, Wold BJ (2000) MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol 224:122–37

    PubMed  CAS  Google Scholar 

  • Day RM, Cioce V, Breckenridge D, Castagnino P, Bottaro DP (1999) Differential signaling by alternative HGF isoforms through c-Met: activation of both MAP kinase and PI 3-kinase pathways is insufficient for mitogenesis. Oncogene 18:3399–406

    PubMed  CAS  Google Scholar 

  • Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–67

    PubMed  CAS  Google Scholar 

  • Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibers and generate satellite cells. Nat Commun 2:499

    PubMed  CAS  Google Scholar 

  • Evano B, Tajbakhsh S (2013) Sorting DNA with asymmetry: a new player in gene regulation? Chromosome Res 21:225–42

    PubMed  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–30 [see comments] [published erratum appears in Science 1998 Aug 14;281(5379):923]

    PubMed  CAS  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11:2040–51

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fukada SI, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells In adult skeletal muscle. Stem Cells 25:2448–59

    PubMed  CAS  Google Scholar 

  • Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A, Johnson RL, Saga Y, Miyagoe-Suzuki Y, Tsujikawa K, Takeda S, Yamamoto H (2011) Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138:4609–19

    PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia-Prat L, Sousa-Victor P, Munoz-Canoves P (2013) Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J 280:4051–62

    PubMed  CAS  Google Scholar 

  • Gayraud-Morel B, Chretien F, Tajbakhsh S (2009) Skeletal muscle as a paradigm for regenerative biology and medicine. Regen Med 4:293–319

    PubMed  Google Scholar 

  • Gayraud-Morel B, Chretien F, Jory A, Sambasivan R, Negroni E, Flamant P, Soubigou G, Coppee JY, Di Santo J, Cumano A, Mouly V, Tajbakhsh S (2012) Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. J Cell Sci 125:1738–49

    PubMed  CAS  Google Scholar 

  • George RM, Biressi S, Beres BJ, Rogers E, Mulia AK, Allen RE, Rawls A, Rando TA, Wilson-Rawls J (2013) Numb-deficient satellite cells have regeneration and proliferation defects. Proc Natl Acad Sci USA 110:18549–18554

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goulding MD, Chalepakis G, Deutsch U, Erselius JR, Gruss P (1991) Pax-3, a novel murine DNA binding protein expressed during early neurogenesis. EMBO J 10:1135–47

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gros J, Manceau M, Thome V, Marcelle C (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435:954–8

    PubMed  CAS  Google Scholar 

  • Gunther S, Kim J, Kostin S, Lepper C, Fan CM, Braun T (2013) Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13:590–601

    PubMed  PubMed Central  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394

    PubMed  CAS  Google Scholar 

  • Halevy O, Cantley LC (2004) Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res 297:224–34

    Google Scholar 

  • Harel I, Nathan E, Tirosh-Finkel L, Zigdon H, Guimaraes-Camboa N, Evans SM, Tzahor E (2009) Distinct origins and genetic programs of head muscle satellite cells. Dev Cell 16:822–32

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364:501–506

    PubMed  CAS  Google Scholar 

  • Hikida RS (2011) Aging changes in satellite cells and their functions. Curr Aging Sci 4:279–97

    PubMed  Google Scholar 

  • Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54

    PubMed  CAS  Google Scholar 

  • Ikemoto M, Fukada S, Uezumi A, Masuda S, Miyoshi H, Yamamoto H, Wada MR, Masubuchi N, Miyagoe-Suzuki Y, Takeda S (2007) Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 15:2178–85

    PubMed  CAS  Google Scholar 

  • Illa I, Leon-Monzon M, Dalakas MC (1992) Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann Neurol 31:46–52

    PubMed  CAS  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–63

    PubMed  CAS  Google Scholar 

  • Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–15

    PubMed  CAS  Google Scholar 

  • Jory A, Le Roux I, Gayraud-Morel B, Rocheteau P, Cohen-Tannoudji M, Cumano A, Tajbakhsh S (2009) Numb promotes an increase in skeletal muscle progenitor cells in the embryonic somite. Stem Cells 27:2769–80

    PubMed  CAS  Google Scholar 

  • Kanisicak O, Mendez JJ, Yamamoto S, Yamamoto M, Goldhamer DJ (2009) Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol 332:131–41

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S (2005) Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 19:1426–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Katz B (1961) The terminations of the afferent nerve fiber in the muscle spindle of the frog. Philos Trans R Soc Lond B Biol Sci 243:221–240

    Google Scholar 

  • Kharraz Y, Guerra J, Mann CJ, Serrano AL, Munoz-Canoves P (2010) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediators Inflamm 2013:491497

    Google Scholar 

  • Kitamoto T, Hanaoka K (2010) Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28:2205–16

    PubMed  CAS  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJC, Fernandez A (1998) The muscle regulatory factors Myod and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459

    PubMed  CAS  PubMed Central  Google Scholar 

  • Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–75

    PubMed  CAS  Google Scholar 

  • Kuang S, Rudnicki MA (2008) The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 14:82–91

    PubMed  CAS  Google Scholar 

  • Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–13

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M, Ma A, McNally EM (2004) Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 114:1577–85

    PubMed  CAS  PubMed Central  Google Scholar 

  • Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA (2009) Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4:535–47

    PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Huynh TV, Lee YS, Sebald SM, Wilcox-Adelman SA, Iwamori N, Lepper C, Matzuk MM, Fan CM (2012) Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc Natl Acad Sci U S A 109:E2353–60

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–46

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7-/- mutant mice. Development 122:831–8

    PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–5

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–66

    PubMed  CAS  PubMed Central  Google Scholar 

  • McKinnell IW, Ishibashi J, Le Grand F, Punch VG, Addicks GC, Greenblatt JF, Dilworth FJ, Rudnicki MA (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    PubMed  CAS  PubMed Central  Google Scholar 

  • Meadows E, Cho JH, Flynn JM, Klein WH (2008) Myogenin regulates a distinct genetic program in adult muscle stem cells. Dev Biol 322:406–14

    PubMed  CAS  Google Scholar 

  • Meadows E, Flynn JM, Klein WH (2011) Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice. PLoS One 6:e16184

    PubMed  CAS  PubMed Central  Google Scholar 

  • Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    PubMed  CAS  Google Scholar 

  • Mitchell JK, Pannerec A, Cadot B, Parlakian A, Besson V, Gomes RE, Marazzi G, Sassoon AD (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

    PubMed  CAS  Google Scholar 

  • Moncaut N, Rigby PW, Carvajal JJ (2013) Dial M(RF) for myogenesis. FEBS J 280:3980–90

    PubMed  CAS  Google Scholar 

  • Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–7

    PubMed  CAS  Google Scholar 

  • Mourikis P, Tajbakhsh S (2014) Distinct contextual roles for Notch signalling in skeletal muscle stem cells. BMC Dev Biol 14:2

    PubMed  PubMed Central  Google Scholar 

  • Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S (2012a) Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139:4536–48

    PubMed  CAS  Google Scholar 

  • Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S (2012b) A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells 30:243–52

    PubMed  CAS  Google Scholar 

  • Murphy M, Kardon G (2011) Origin of vertebrate limb muscle: The role of progenitor and myoblast populations. Curr Top Dev Biol 96:1–32

    PubMed  CAS  Google Scholar 

  • Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–37

    PubMed  CAS  PubMed Central  Google Scholar 

  • Murphy MM, Keefe CA, Lawson JA, Flygare DS, Yandell M, Kardon G (2014) Transiently active Wnt/β-catenin signaling is not required but must be silenced for stem cell function during muscle regeneration. Stem Cell Reports 3:1–14

    Google Scholar 

  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535

    PubMed  CAS  Google Scholar 

  • Nagata Y, Partridge TA, Matsuda R, Zammit PS (2006) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol 174:245–53

    PubMed  CAS  PubMed Central  Google Scholar 

  • Otto A, Schmidt C, Luke G, Allen S, Valasek P, Muntoni F, Lawrence-Watt D, Patel K (2008) Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci 121:2939–50

    PubMed  CAS  Google Scholar 

  • Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–9

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perry JM, Li L (2010) Functional assays for hematopoietic stem cell self-renewal. Methods Mol Biol 636:45–54

    PubMed  Google Scholar 

  • Relaix F, Rocancourt D, Mansouri A, Buckingham M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–53

    PubMed  CAS  Google Scholar 

  • Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rocheteau P, Gayraud-Morel B, Siegl-Cachedenier I, Blasco MA, Tajbakhsh S (2012) A subpopulation of adult skeletal muscle stem cells retains all template DNA strands after cell division. Cell 148:112–25

    PubMed  CAS  Google Scholar 

  • Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–6

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly RG, Tajbakhsh S (2009) Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 16:810–21

    PubMed  CAS  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–56

    PubMed  CAS  Google Scholar 

  • Sambasivan R, Comai G, Le Roux I, Gomes D, Konge J, Dumas G, Cimper C, Tajbakhsh S (2013) Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Dev Biol 381:241–55

    PubMed  CAS  Google Scholar 

  • Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–92

    PubMed  CAS  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–9

    PubMed  CAS  Google Scholar 

  • Scharner J, Zammit PS (2011) The muscle satellite cell at 50: the formative years. Skelet Muscle 1:28

    PubMed  PubMed Central  Google Scholar 

  • Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103:945–50

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schuster-Gossler K, Cordes R, Gossler A (2007) Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci U S A 104:537–42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–86

    PubMed  CAS  Google Scholar 

  • Shavlakadze T, McGeachie J, Grounds MD (2010) Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 11:363–76

    PubMed  Google Scholar 

  • Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS (2010) Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6:117–29

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–82

    PubMed  CAS  Google Scholar 

  • Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II An autoradiographic study. Anat Rec 188:201–17

    PubMed  CAS  Google Scholar 

  • Soleimani VD, Punch VG, Kawabe Y, Jones AE, Palidwor GA, Porter CJ, Cross JW, Carvajal JJ, Kockx CE, van IJcken WF, Perkins TJ, Rigby PW, Grosveld F, Rudnicki MA (2012) Transcriptional dominance of Pax7 in adult myogenesis is due to high-affinity recognition of homeodomain motifs. Dev Cell 22:1208–20

    PubMed  CAS  PubMed Central  Google Scholar 

  • Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J (2005) Retrospective birth dating of cells in humans. Cell 122:133–43

    PubMed  CAS  Google Scholar 

  • Subramaniam S, Sreenivas P, Cheedipudi S, Reddy VR, Shashidhara LS, Chilukoti RK, Mylavarapu M, Dhawan J (2013) Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs irreversible arrest. PLoS One 8:e65097

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tajbakhsh S (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266:372–389

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S (2013) Losing stem cells in the aged skeletal muscle niche. Cell Res 23:455–7

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Buckingham M (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384:266–270

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89:127–138

    PubMed  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–28

    PubMed  CAS  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–9

    PubMed  CAS  PubMed Central  Google Scholar 

  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–52

    PubMed  CAS  Google Scholar 

  • Uezumi A, Ito T, Morikawa D, Shimizu N, Yoneda T, Segawa M, Yamaguchi M, Ogawa R, Matev MM, Miyagoe-Suzuki Y, Takeda S, Tsujikawa K, Tsuchida K, Yamamoto H, Fukada S (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–64

    PubMed  CAS  Google Scholar 

  • Ustanina S, Carvajal J, Rigby P, Braun T (2007) The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25:2006–16

    PubMed  CAS  Google Scholar 

  • Vinciguerra M, Musaro A, Rosenthal N (2010) Regulation of muscle atrophy in aging and disease. Adv Exp Med Biol 694:211–33

    PubMed  CAS  Google Scholar 

  • von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110:16474–9

    Google Scholar 

  • Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32:2300–11

    PubMed  CAS  PubMed Central  Google Scholar 

  • White JD, Scaffidi A, Davies M, McGeachie J, Rudnicki MA, Grounds MD (2000) Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. J Histochem Cytochem 48:1531–44

    PubMed  CAS  Google Scholar 

  • White RB, Bierinx AS, Gnocchi VF, Zammit PS (2010) Dynamics of muscle fiber growth during postnatal mouse development. BMC Dev Biol 10:21

    PubMed  PubMed Central  Google Scholar 

  • Xu C, Tabebordbar M, Iovino S, Ciarlo C, Liu J, Castiglioni A, Price E, Liu M, Barton ER, Kahn CR, Wagers AJ, Zon LI (2013) A Zebrafish embryo culture system defines factors that promote vertebrate myogenesis across species. Cell 155:909–21

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–55

    PubMed  CAS  Google Scholar 

  • Yennek S, Tajbakhsh S (2013) DNA asymmetry and cell fate regulation in stem cells. Semin Cell Dev Biol 24:627–42

    PubMed  CAS  Google Scholar 

  • Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zanou N, Gailly P (2013) Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci 70:4117–30

    PubMed  CAS  Google Scholar 

  • Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Peault B (2007) Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol 25:1025–34

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

RS is supported by Ramalingaswamy Fellowship from Department of Biotechnology, Government of India as well as by Institute for Stem Cell Biology and Regenerative Medicine (inStem). ST acknowledges support from the Institut Pasteur, Centre National de la Recherche Scientifique, Association Française contre les Myopathies (AFM), and the Fondation pour la Recherche Médicale. We are thankful to the artist Mr. Sartaj Ghuman for the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkumar Sambasivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sambasivan, R., Tajbakhsh, S. (2015). Adult Skeletal Muscle Stem Cells. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44608-9_9

Download citation

Publish with us

Policies and ethics