Skip to main content

Computer models for ions under electric and magnetic fields: random walks and relocation of calcium in dendrites depends on timing and population type

  • Conference paper
  • First Online:

Part of the book series: IFMBE Proceedings ((IFMBE,volume 60))

Abstract

In this computational study we analyze segregated population of ions in biological tissues and how electric or magnetic fields can relocate them. The appropriate definition of a segregated population of ions is justified for its physiological relevance, algorithmic simplicity and biophysical realism. Although this study can be valid for several ions and cell compartments, we focus on calcium ions in parallel dendrites of neurons. Computer simulations are presented as calcium flux visualizations showing the final position of each ion in different conditions in neurons: in the absence of an electric field and in the presence of it at different timings in relation to the initial release event of calcium into the dendrites. The simulation suggests that it is possible to relocate (probabilistically) aggregations of calcium ions in the spaces of the dendrites, allowing neuromodulation of synaptic connections. In conclusion, the maximal response to endogenous electric fields and the efficient way to design “friendly” devices for electrical field stimulation of neurons for relocating calcium ions close to their targets (e.g. vesicle sensors, proteins in membranes, or cytosol) depends on the geometry of dendrites, the duration and timing of the field (respect to ongoing activity), and the selection of the appropriate subpopulation we want to relocate.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anwar H, Roome CJ, Chen W et al. (2015) Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models. Front. Cell. Neurosci., 23 July

    Google Scholar 

  2. Llinas R (2014) Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective Front. Cell. Neurosci., 04 November | http://dx.doi.org/10.3389/fncel..00320

  3. Santamaria F, Wils S, De Schutter E et al (2011) The diffusional properties of dendrites depend on the density of dendritic spines. Eur. J. Neurosci. 1460-9568.

    Google Scholar 

  4. Bower JM (2015) The 40-year history of modeling active dendrites in cerebellar Purkinje cells: emergence of the first single cell “community model” Front Comput Neurosci. Oct 20;9:129. doi: 10.3389/fncom.2015.00129.

  5. Wilson CJ (2008) Up and down states. Scholarpedia 3:1410.

    Google Scholar 

  6. McDougal RA, Hines ML, Lytton WW (2013) Reaction-diffusion in the NEURON simulator. Front Neuroinform. Nov 15;7:28. DOI: 10.3389/fninf.2013.00028.

  7. Neymotin SA, McDougal RA, Sherif MA et al. (2015) Neuronal calcium wave propagation varies with changes in endoplasmic reticulum parameters: a computer model. Neural Comput. Apr;27(4):898-924. DOI: 10.1162/NECO_a_00712. Epub Mar 3.

  8. McDougal RA, Morse TM, Hines ML et al. (2015) ModelView for ModelDB: Online Presentation of Model Structure. Neuroinformatics. Oct;13(4):459-70. DOI: 10.1007/s12021-015-9269-2.

  9. Anastassiou CA1, Perin R, Markram H et al. (2011) Ephaptic coupling of cortical neurons. Nat Neurosci. Feb;14(2):217-23. DOI: 10.1038/nn.2727. Epub Jan 16.

  10. Gomez JF (2003) Ionic channels and long-range electrical signals: a probabilistic interaction. Med Hypotheses. Vol 60, 4, 463-467

    Google Scholar 

  11. Weiss SA, Faber DS (2010) Field effects in the CNS play functional roles. Front Neural Circuits. May 18;4:15. doi: 10.3389/fncir..00015. eCollection

  12. Gomez-Molina JF, Restrepo-Velazques A, and Botero-Posada LF (2015) Field Generated by Waves, Sequential Activations and Apparent Motion: Effects and Typical Patterns Revista Ingenieria Biomedica 9:17 http://repository.eia.edu.co/revistas/index.php/BME/article/view/732

  13. Scholkmann F (2015) Two emerging topics regarding long-range physical signaling in neurosystems: Membrane nanotubes and electromagnetic fields. J Integr Neurosci. Jun;14(2):135-53. doi: 10.1142/S0219635215300115. Epub May 11.

  14. Fregni F, Pascual-Leone A (2007) Technology Insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDC Nat Rev Neurol 3, 383-393 DOI:10.1038/ncpneuro0530

  15. Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron. Jul 15;67(1):129-43. DOI: 10.1016/j.neuron06.005

  16. Gomez-Molina JF, Ricoy UM, J. Velez-M.D., D. Sepulveda-Falla (2014) Reestablishing Ca2+ amplitude and speed during deep sleep in Alzheimer´s disease with EEG-triggered TES/TMS: Neuromodulation of abnormal columnar states. Abstract Society for Neuroscience Meeting. DOI: 10.13140/RG.2.1.3568.8403Program93.11/BB36

  17. Wieder N, Rainer HA, Wegner F (2011) Exact and Approximate Stochastic Simulation of Intracellular Calcium Dynamics J Biomed Biotechnol. 2011; 572492. PMCID: PMC3216318

    Google Scholar 

  18. Blackwell KT (2013) Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods. 220(2):131-140

    Google Scholar 

  19. Gomez-Molina JF, Corredor M, Restrepo A, Ricoy U (2015) Computer Simulation for ions under electric and magnetic fields: from random walks in aqueous solutions to stochastic manifolds for calcium location probabilities in microbes and neurons. III Colombian Congress on Computational Biology and Bioinformatics Organized by University of Antioquia, EAFIT Univ, CIB, ITM, UPB, CES. DOI: 10.13140/RG.2.1.4097.4805 http://www.researchgate.net

  20. Ricoy UM1, Frerking ME (2014) Distinct roles for Cav2.1-2.3 in activity-dependent synaptic dynamics. J Neurophysiol. Jun 15;111(12):2404-13. DOI: 10.1152/jn.00335.2013. Epub Feb 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gomez-Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Gomez-Molina, J.F., Corredor, M., Restrepo-Velasquez, A.A., Ricoy, U.M. (2017). Computer models for ions under electric and magnetic fields: random walks and relocation of calcium in dendrites depends on timing and population type. In: Torres, I., Bustamante, J., Sierra, D. (eds) VII Latin American Congress on Biomedical Engineering CLAIB 2016, Bucaramanga, Santander, Colombia, October 26th -28th, 2016. IFMBE Proceedings, vol 60. Springer, Singapore. https://doi.org/10.1007/978-981-10-4086-3_175

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4086-3_175

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4085-6

  • Online ISBN: 978-981-10-4086-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics