Skip to main content

Oligodendroglial Cells in Alzheimer’s Disease

  • Chapter
  • First Online:
Neuroglia in Neurodegenerative Diseases

Abstract

Oligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer’s disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia. White matter loss is often among the earliest brain changes in AD, preceding the tangles and plaques that characterize neuronal deficits. The underlying causes of myelin loss include oxidative stress, neuroinflammation and excitotoxicity, associated with accumulation of Aβ and tau hyperphosphorylation, pathological hallmarks of AD. Moreover, there is evidence that NG2-glia are disrupted in AD, which may be associated with disruption of synaptic signalling. This has led to the hypothesis that a vicious cycle of myelin loss and failure of regeneration from NG2-glia plays a key role in AD. Therapies that target NG2-glia are likely to have positive effects on myelination and neuroprotection in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandra IM, Constanze D, Klaus-Armin N (2018) An emerging role of dysfunctional axon-oligodendrocyte coupling in neurodegenerative diseases. Dialogues Clin Neurosci 20:283–292

    Article  Google Scholar 

  2. Azim K, Angonin D, Marcy G, Pieropan F, Rivera A, Donega V, Cantu C, Williams G, Berninger B, Butt AM, Raineteau O (2017) Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity. PLoS Biol 15:e2000698

    Article  Google Scholar 

  3. Azim K, Fischer B, Hurtado-Chong A, Draganova K, Cantu C, Zemke M, Sommer L, Butt A, Raineteau O (2014) Persistent Wnt/beta-catenin signaling determines dorsalization of the postnatal subventricular zone and neural stem cell specification into oligodendrocytes and glutamatergic neurons. Stem Cells 32:1301–1312

    Article  CAS  Google Scholar 

  4. Bakiri Y, Hamilton NB, Káradóttir R, Attwell D (2008) Testing NMDA receptor block as a therapeutic strategy for reducing ischaemic damage to CNS white matter. Glia 56:233–240

    Article  Google Scholar 

  5. Bartzokis G (2004) Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging 25, 5–18; author reply 49–62

    Article  CAS  Google Scholar 

  6. Bartzokis G (2011) Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 32:1341–1371

    Article  CAS  Google Scholar 

  7. Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Gotz M, Dimou L (2013) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61:273–286

    Article  Google Scholar 

  8. Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ, Maffei A, Aguirre A (2015) Genetic and stress-induced loss of NG2 Glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88:941–956

    Article  CAS  Google Scholar 

  9. Braak H, Braak E (1996) Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol 92:197–201

    Article  CAS  Google Scholar 

  10. Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol 37:56–74

    Article  CAS  Google Scholar 

  11. Cai Z, Xiao M (2016) Oligodendrocytes and Alzheimer’s disease. Int J Neurosci 126:97–104

    Article  CAS  Google Scholar 

  12. Chen TJ, Kula B, Nagy B, Barzan R, Gall A, Ehrlich I, Kukley M (2018) In vivo regulation of oligodendrocyte precursor cell proliferation and differentiation by the AMPA-receptor subunit GluA2. Cell Rep 25:852–861.e7

    Article  CAS  Google Scholar 

  13. Chorghay Z, Káradóttir RT, Ruthazer ES (2018) White matter plasticity keeps the brain in tune: axons conduct while glia wrap. Front Cell Neurosc 12:428–428

    Article  Google Scholar 

  14. Chu T-H, Cummins K, Sparling JS, Tsutsui S, Brideau C, Nilsson KPR, Joseph JT, Stys PK (2017) Axonal and myelinic pathology in 5xFAD Alzheimer’s mouse spinal cord. PLoS ONE 12:e0188218–e0188218

    Article  Google Scholar 

  15. Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer’s disease. Ageing Res Rev 12:757–763

    Article  CAS  Google Scholar 

  16. de Rossi P, Buggia-Prevot V, Clayton BL, Vasquez JB, van Sanford C, Andrew RJ, Lesnick R, Botte A, Deyts C, Salem S, Rao E, Rice RC, Parent A, Kar S, Popko B, Pytel P, Estus S, Thinakaran G (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11:59

    Article  Google Scholar 

  17. Dean DC, III, Hurley SA, Kecskemeti SR, O’Grady JP, Canda C, Davenport-Sis NJ, Carlsson CM, Zetterberg H, Blennow K, Asthana S, Sager MA, Johnson SC, Alexander AL, Bendlin BB (2017) Association of amyloid pathology with myelin alteration in preclinical alzheimer disease. JAMA Neurol 74:41–49

    Article  Google Scholar 

  18. Desai MK, Guercio BJ, Narrow WC, Bowers WJ (2011) An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia 59:627–640

    Article  Google Scholar 

  19. Desai MK, Mastrangelo MA, Ryan DA, Sudol KL, Narrow WC, Bowers WJ (2010) Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am J Pathol 177:1422–1435

    Article  CAS  Google Scholar 

  20. Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ (2009) Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 57:54–65

    Article  Google Scholar 

  21. Dong YX, Zhang HY, Li HY, Liu PH, Sui Y, Sun XH (2018) Association between Alzheimer’s disease pathogenesis and early demyelination and oligodendrocyte dysfunction. Neural Regen Res 13:908–914

    Article  Google Scholar 

  22. Fern RF, Matute C, Stys PK (2014) White matter injury: ischemic and nonischemic. Glia 62:1780–1789

    Article  Google Scholar 

  23. Fischer FU, Wolf D, Scheurich A, Fellgiebel A (2015) Altered whole-brain white matter networks in preclinical Alzheimer’s disease. Neuroimage Clin 8:660–666

    Article  Google Scholar 

  24. Gu L, Wu D, Tang X, Qi X, Li X, Bai F, Chen X, Ren Q, Zhang Z (2018) Myelin changes at the early stage of 5XFAD mice. Brain Res Bull 137:285–293

    Article  CAS  Google Scholar 

  25. Hill RA, Li AM, Grutzendler J (2018) Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 21:683–695

    Article  CAS  Google Scholar 

  26. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    Article  CAS  Google Scholar 

  27. Hoy AR, Ly M, Carlsson CM, Okonkwo OC, Zetterberg H, Blennow K, Sager MA, Asthana S, Johnson SC, Alexander AL, Bendlin BB (2017) Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging. PLoS ONE 12:e0173982

    Article  Google Scholar 

  28. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706

    Article  CAS  Google Scholar 

  29. Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN (2010) Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol 119:579–589

    Article  CAS  Google Scholar 

  30. Jantaratnotai N, Ryu JK, Kim SU, McLarnon JG (2003) Amyloid beta peptide-induced corpus callosum damage and glial activation in vivo. NeuroReport 14:1429–1433

    Article  CAS  Google Scholar 

  31. Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY (2004) Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164:123–131

    Article  CAS  Google Scholar 

  32. Li W, Tang Y, Fan Z, Meng Y, Yang G, Luo J, Ke ZJ (2013) Autophagy is involved in oligodendroglial precursor-mediated clearance of amyloid peptide. Mol Neurodegener 8:27

    Article  Google Scholar 

  33. Liu J, Chang L, Song Y, Li H, Wu Y (2019) The Role of NMDA Receptors in Alzheimer’s Disease. Front Neurosci 13:43–43

    Article  Google Scholar 

  34. Llorens-Martin M, Jurado J, Hernandez F, Avila J (2014) GSK-3beta, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 7:46

    PubMed  Google Scholar 

  35. McAleese KE, Firbank M, Dey M, Colloby SJ, Walker L, Johnson M, Beverley JR, Taylor JP, Thomas AJ, O’Brien JT, Attems J (2015) Cortical tau load is associated with white matter hyperintensities. Acta Neuropathol Commun 3:60

    Article  Google Scholar 

  36. McAleese KE, Walker L, Graham S, Moya ELJ, Johnson M, Erskine D, Colloby SJ, Dey M, Martin-Ruiz C, Taylor JP, Thomas AJ, McKeith IG, de Carli C, Attems J (2017) Parietal white matter lesions in Alzheimer’s disease are associated with cortical neurodegenerative pathology, but not with small vessel disease. Acta Neuropathol 134:459–473

    Article  CAS  Google Scholar 

  37. McKenzie AT, Moyon S, Wang M, Katsyv I, Song WM, Zhou X, Dammer EB, Duong DM, Aaker J, Zhao Y, Beckmann N, Wang P, Zhu J, Lah JJ, Seyfried NT, Levey AI, Katsel P, Haroutunian V, Schadt EE, Popko B, Casaccia P, Zhang B (2017) Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer’s disease. Mol Neurodegener 12:82

    Article  Google Scholar 

  38. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322

    Article  CAS  Google Scholar 

  39. Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439:988–992

    Article  CAS  Google Scholar 

  40. Mitew S, Kirkcaldie MT, Halliday GM, Shepherd CE, Vickers JC, Dickson TC (2010) Focal demyelination in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol 119:567–577

    Article  CAS  Google Scholar 

  41. Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta neuropathologica communications 6:22–22

    Article  Google Scholar 

  42. Ndayisaba A, Kaindlstorfer C, Wenning GK (2019) Iron in neurodegeneration—cause or consequence? Front Neurosci 13:180

    Article  Google Scholar 

  43. Nielsen HM, Ek D, Avdic U, Orbjorn C, Hansson O, Veerhuis R, Rozemuller AJ, Brun A, Minthon L, Wennstrom M (2013) NG2 cells, a new trail for Alzheimer’s disease mechanisms? Acta Neuropathol Commun 1:7

    Article  Google Scholar 

  44. Quintela-Lopez T, Ortiz-Sanz C, Serrano-Regal MP, Gaminde-Blasco A, Valero J, Baleriola J, Sanchez-Gomez MV, Matute C, Alberdi E (2019) Abeta oligomers promote oligodendrocyte differentiation and maturation via integrin beta1 and Fyn kinase signaling. Cell Death Dis 10:445

    Article  Google Scholar 

  45. Rivera A, Vanzuli I, Arellano JJ, Butt A (2016) Decreased regenerative capacity of oligodendrocyte progenitor cells (NG2-Glia) in the ageing brain: a vicious cycle of synaptic dysfunction, myelin loss and neuronal disruption? Curr Alzheimer Res 13:413–418

    Article  CAS  Google Scholar 

  46. Rodriguez JJ, Butt AM, Gardenal E, Parpura V, Verkhratsky A (2016) Complex and differential glial responses in Alzheimer’s disease and ageing. Curr Alzheimer Res 13:343–358

    Article  CAS  Google Scholar 

  47. Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T (2002) Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41:11080–11090

    Article  CAS  Google Scholar 

  48. Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K, Trotter J, Mittmann T (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993

    Article  Google Scholar 

  49. Salter MG, Fern R (2005) NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438:1167–1171

    Article  CAS  Google Scholar 

  50. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  Google Scholar 

  51. Stassart RM, Mobius W, Nave KA, Edgar JM (2018) The Axon-Myelin unit in development and degenerative disease. Front Neurosci 12:467

    Article  Google Scholar 

  52. Thal DR, Rub U, Orantes M, Braak H (2002) Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    Article  Google Scholar 

  53. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651

    Article  CAS  Google Scholar 

  54. Wan W, Xia S, Kalionis B, Liu L, Li Y (2014) The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? Biomed Res Int 2014:301575

    PubMed  PubMed Central  Google Scholar 

  55. Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57:1041–1048

    Article  CAS  Google Scholar 

  56. Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment [version 1; peer review: 2 approved]. F1000Research 7

    Google Scholar 

  57. Wu Y, Ma Y, Liu Z, Geng Q, Chen Z, Zhang Y (2017) Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer’s disease mouse model. Neurosci Lett 642:102–106

    Article  CAS  Google Scholar 

  58. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, Emery B, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217

    Article  CAS  Google Scholar 

  59. Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP, Hsu CY (2001) Amyloid-beta peptides are cytotoxic to oligodendrocytes. J Neurosci 21:Rc118

    Google Scholar 

  60. Yin F, Sancheti H, Patil I, Cadenas E (2016) Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med 100:108–122

    Article  CAS  Google Scholar 

  61. Zhan X, Jickling GC, Ander BP, Stamova B, Liu D, Kao PF, Zelin MA, Jin LW, Decarli C, Sharp FR (2015) Myelin basic protein associates with AbetaPP, Abeta1-42, and amyloid plaques in cortex of Alzheimer’s disease brain. J Alzheimers Dis 44:1213–1229

    Article  CAS  Google Scholar 

  62. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, Abdelmohsen K, Bohr VA, Misra Sen J, Gorospe M, Mattson MP (2019) Senolytic therapy alleviates Abeta-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer’s disease model. Nat Neurosci 22:719–728

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the BBSRC, MRC and Multiple Sclerosis Society of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur M. Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, A.M., De La Rocha, I., Rivera, A. (2019). Oligodendroglial Cells in Alzheimer’s Disease. In: Verkhratsky, A., Ho, M., Zorec, R., Parpura, V. (eds) Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_12

Download citation

Publish with us

Policies and ethics