Skip to main content
Log in

Developmental aspects of the Rhizobium-legume symbiosis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD: Molecular Biology of the Cell, 2nd ed. Garland, New York/London (1989).

    Google Scholar 

  2. Allen EK, Allen ON, Newman AS: Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Am J Bot 40: 429–435 (1953).

    Google Scholar 

  3. Aman P, McNeil M, Franzen L-E, Darvill AG, Albersheim P: Structural elucidation, using HPLC-MS and GLC-MS, of the acidic polysaccharide secreted by Rhizobium meliloti strain 1021. Carbohydr Res 95: 263–282 (1981).

    Article  Google Scholar 

  4. Bakhuizen R: The plant cytoskeleton in the Rhizobium-legume symbiosis. Ph.D. Thesis, Leiden University, Netherlands (1988).

  5. Battisti L, Lee CC, Leigh JA: Specific forms of exopolysaccharides from Rhizobium meliloti restore symbiotic effectiveness to R. meliloti exo mutants. In: Abstracts 5th International Symposium on Molecular Genetics of Plant-Microbe Interactions, Interlaken, Switzerland p. 164, (1990).

  6. Broughton WJ, Krause A, Lewin A, Perret X, Price NPJ, Relic B, Rochepeau P, Wong C-H, Pueppke SG, Brenner S: Signal exchange mediates host-specific nodulation of tropical legumes by the broad host-range Rhizobium species NGR234. In: Hennecke H, Verma DPS (eds), Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 162–167. Kluwer Academic Publishers, Dordrecht/Boston/London (1991).

    Google Scholar 

  7. Calvert HE, Pence MK, Bierce M, Malik NSA, Bauer WD: Anatomical analysis of the development and distribution of Rhizobium infections in soyabean roots. Can J Bot 62: 2375–2384 (1984).

    Google Scholar 

  8. Carlson RS, Kalembasa S, Tunoroski D, Packori P, Noel KD: Characterization of the lipopolysaccharide from a Rhizobium phaseoli mutant that is defective in infection thread development. J Bact 169: 4923–4928 (1987).

    PubMed  Google Scholar 

  9. Carlson RW: Heterogenicity of Rhizobium lipopolysaccharides. J Bact 158: 1012–1017 (1984).

    PubMed  Google Scholar 

  10. Carlson RW: Surface chemistry. In: Broughton WJ (ed), Nitrogen Fixation, vol 2, Rhizobium, pp. 199–234, Clarendon Press Oxford (1982).

    Google Scholar 

  11. DeBilly F, Barker OG, Gallusci P, Truchet G: Leghaemoglobin gene transcription is triggered in a single cell layer in the indeterminate nitrogen fixing root nodule of alfalfa. Plant J 1: 27–37 (1991).

    Google Scholar 

  12. DeBruijn FJ, Felix G, Grunenberg B, Hoffman H-J, Metz B, Ratet P, Simons-Schreier A, Szabados L, Welters P, Schell J: Regulation of plant genes specifically induced in nitrogen fixing nodules: Role of cis-acting elements and rans-acting factors in leghemoglobin gene expression. Plant Mol Biol 13: 319–325 (1989).

    PubMed  Google Scholar 

  13. Dehesh K, Bruce WB, Quail PH: A trans-acting factor that binds to a GT-motif in a phytochrome gene promotor. Science 250: 1397–1399 (1990).

    PubMed  Google Scholar 

  14. deMaagd RA, vanRossum C, Lugtenberg BJJ: Recognition of individual strains of fast-growing rhizobia by using profiles of membrane proteins and lipopolysaccharides. J Bact 170: 3783–3785 (1988).

    Google Scholar 

  15. Delauney A, Verma DPS: Cloned nodulin genes for symbiotic nitrogen fixation. Plant Mol Biol Rep 6: 279–285 (1988).

    Google Scholar 

  16. Diaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg BJJ, Kijne JW: Root lectins as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581 (1989).

    Article  Google Scholar 

  17. Dickstein R, Bisseling T, Reinhold VN, Ausubel FM: Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development: Genes Devel 2: 677–687 (1988).

    PubMed  Google Scholar 

  18. Djordjevic S, Chen H, Batley M, Redmond JW, Rolfe B: Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bact 169: 53–60 (1987).

    PubMed  Google Scholar 

  19. Dylan T: Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 83: 4403–4407 (1986).

    Google Scholar 

  20. Faucher C, Camut S, Dénarié J, Truchet G: The nodH and nodQ host range genes of Rhizobium meliloti behave as avirulence genes in R. leguminosarum bv. viciae and determine changes in the production of plant-specific extracellular signals. Mol Plant-Microbe Inter 2: 291–300 (1989).

    Google Scholar 

  21. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER: Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40: 869–877 (1985).

    Article  PubMed  Google Scholar 

  22. Forde BG, Day HM, Turton JF, Wen-Jun S, Cullimore JV, Oliver JE: Two glutamine synthase genes from Phaseolus vulgaris L. display contrasting developmental and spatial patterns of expression in transgenic Lotus corniculatus plants. Plant Cell 1: 391–401 (1989).

    Article  PubMed  Google Scholar 

  23. Fortin MG, Morrison NA, Verma DPS: Nodulin 26 a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucl Acids Res 15: 813–824 (1987).

    PubMed  Google Scholar 

  24. Fortin MG, Zelechowska M, Verma DPS: Specific targetting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J 4: 3041–3046 (1985).

    Google Scholar 

  25. Franssen HJ, Scheres B, Van deWiel C, Bisseling T: Characterization of soybean (hydroxy)proline-rich proteins. In: Palacios R, Verma DPS (eds) Molecular Genetics of Plant-Microbe Interaction, pp. 321–326. APS Press, St. Paul, MN (1988).

    Google Scholar 

  26. Glazebrook J, Walker GC: A novel exopolysaccharide can function in place of the Calcofluor-binding exopolysaccharide in nodulation of alfalfa by Rhizobium meliloti. Cell 56: 661–672 (1989).

    Article  PubMed  Google Scholar 

  27. Gloudemans T, Bhuvaneswari TV, Moerman M, vanBrussel AAN, vanKammen A, Bisseling T: Involvement of Rhizobium leguminosarum nodulation genes on gene expression in pea root hairs. Plant Mol Biol 12: 157–167 (1989).

    Google Scholar 

  28. Govers F, Nap JP, Moerman M, Franssen HJ, vanKammen A, Bisseling T: cDNA cloning and developmental expression of pea nodulin genes. Plant Mol Biol 8: 425–435 (1987).

    Google Scholar 

  29. Govers F, Nap JP, vanKammen A, Bisseling T: Nodulins in the developing root nodule. Plant Physiol Biochem 25: 309–322 (1987).

    Google Scholar 

  30. Grierson D, Covey SN: Plant Molecular Biology, 2nd ed. Blackie, London (1988).

    Google Scholar 

  31. Guiltinan MJ, Marcotte WR, Quatrano RS: A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–271 (1990).

    PubMed  Google Scholar 

  32. Hahlbrock K, Scheel D: Physiology and molecular biology of phenylpropenoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369 (1989).

    Article  Google Scholar 

  33. Hennecke H: Nitrogen fixation genes involved in the Bradyrhizobium japonicum-soybean symbiosis. FEBS Lett 268: 422–426 (1990).

    Article  PubMed  Google Scholar 

  34. Hirsch AM, Bhuvaneswari TV, Torrey J-G, Bisseling T: Early nodulin genes are induced in alfalfa root out-growths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA 86: 1244–1248 (1989).

    Google Scholar 

  35. Hirsch AM, Bochenek B, Löbler M, McKhann HI, Reddy A, Li H-H, Ong M, Wong J: Patterns of nodule development and nodulin gene expression in alfalfa and afghanistan pea. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 317–324. Kluwer Academic Publishers, Dordrecht/Boston/London (1991).

    Google Scholar 

  36. Horváth B, Kondorosi E, John M, Schmidt J, Torok I, Gyorgypal Z, Barabas I, Wieneke U, Schell J, Kondorosi A: Organization, structure and symbiotic function of Rhizobium meliloti nodulation genes determining host specificity for alfalfa. Cell 46: 335–343 (1986).

    Article  PubMed  Google Scholar 

  37. Jacobs M, Rubery HP: Naturally occurring auxin transport vegetators. Science 241: 346–349 (1988).

    Google Scholar 

  38. Jacobsen K, Laursen NB, Jensen EØ, Marcker A, Poulsen C, Marcker KA: HMG1-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters. Plant Cell 2: 85–94 (1990).

    Article  PubMed  Google Scholar 

  39. Jensen EØ, Stougaard J, Jørgensen J-E, Sandal NN, deBruijn FJ, Schell J, Marcker KA: Regulation of nodule-specific plant genes. In: Bothe H, deBruijn FJ, Newton WE (eds) Nitrogen Fixation: Hundred Years After, pp. 351–356. Gustav Fischer, New York (1988).

    Google Scholar 

  40. Jensen EØ, Marcker KA, Schell J, DeBruijn FJ: Interaction of a nodule specific, trans-acting factor with distinct DNA elements in the soybean leghaemoglobin Lbc3 5′ upstream region. EMBO J 7: 1265–1271 (1988).

    Google Scholar 

  41. Jørgensen J-E, Stougaard J, Marcker A, Marcker KA: Root nodule specific gene regulation: Analysis of the soybean nodulin N23 gene promoter in heterologous symbiotic systems. Nucl Acids Res 16: 39–50 (1988).

    PubMed  Google Scholar 

  42. Kijne J: In: Stacey G, Burris R, Evans H (eds) Biological Nitrogen Fixation. Chapman and Hall, New York (in press).

  43. Knox JP, Day S, Roberts KA: A set of surface glycoproteins forms an early marker of cell position, but not cell type, in the root apical meristem of Daucus carota L. Development 106: 47–56 (1989).

    Google Scholar 

  44. Kondorosi A, Horváth B, Göttfert M, Putnoky P, Rostas K, Györgypal Z, Kondorosi E, Török I, Bachem C, John M, Schmidt J, Schell J: Identification and organization of Rhizobium meliloti genes relevant to the initiation and development of nodules. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen Fixation Research Progress, pp. 73–79. Martinus Nijhoff, Dordrecht/Boston/Lancaster (1985).

    Google Scholar 

  45. Kuhlemeyer C, Green PJ, Chua N-H: Regulation of gene expression in higher plants. Annu Rev Plant Physiol 38: 221–257 (1987).

    Google Scholar 

  46. Legocki RP, Verma DPS: A nodule specific plant protein (Nodulin-35) from soybean. Science 205: 190–193 (1979).

    Google Scholar 

  47. Leigh JA, Reed JW, Hanks JF, Hirsch AM, Walker GC: Rhizobium meliloti mutants that fail to succinylate their Calcofluor-binding exopolysaccharide are defective in nodule infection. Cell 51: 579–587 (1987).

    Article  PubMed  Google Scholar 

  48. Leigh JA, Signer ER, Walker GC: Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82: 6231–6235 (1985).

    PubMed  Google Scholar 

  49. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784 (1990).

    Article  PubMed  Google Scholar 

  50. Lewin B: Genes IV. Wiley, New York (1989).

    Google Scholar 

  51. Long S, Reed JW, Himawan JW, Walker GC: Genetic analysis of a cluster of genes required for the synthesis of the Calcofluor-binding exopolysaccharide of Rhizobium meliloti. J Bact 170: 4239–4248 (1988).

    PubMed  Google Scholar 

  52. Long SR, Atkinson EM: Rhizobium sweet-talking. Nature 344: 712–713 (1990).

    Article  Google Scholar 

  53. Long SR, Cooper J: Overview of symbiosis. In: Palacios R, Verma DPS (eds) Molecular Genetics of Plant-Microbe Interactions, pp. 163–178 APS Press. St. Paul, MN (1988).

    Google Scholar 

  54. Long SR: Rhizobium-legume nodulation: life together in the underground. Cell 56: 203–214 (1989).

    Article  PubMed  Google Scholar 

  55. Marcker A, Lund M, Jensen E, Marcker KA: Transcription of the soybean leghemoglobin genes during nodule development. EMBO J 3: 1691–1695 (1984).

    Google Scholar 

  56. Metz BA, Welters P, Hoffman HJ, Jensen EØ, Schell J, DeBruijn F: Primary structure and promoter analysis of leghemoglobin genes of the stem-nodulated tropical legume Sesbania rostrata: conserved coding sequences cis-elements and trans-acting factors. Mol Gen Genet 214: 181–191 (1988).

    PubMed  Google Scholar 

  57. Mitchell PJ, Tjian R: Transcriptional regulation in mammalian cells by sequence-specific DNA-binding proteins. Science 245: 371–378 (1989).

    PubMed  Google Scholar 

  58. Nap JP, Bisseling T: Nodulin function and nodulin gene regulation in root nodule development. In: Gresshoff PM (ed) The Molecular Biology of Symbiotic Nitrogen Fixation, pp. 181–229. CRC Press, Boca Raton, FL (1989).

    Google Scholar 

  59. Nap JP, Bisseling T: Developmental biology of a plant-prokaryote symbiosis: The legume root nodule. Science 250: 948–954 (1990).

    Google Scholar 

  60. Newcomb EH, Tandon SR: Uninfected cells of soybean root nodules: ultrastructure suggests key role in ureide production. Science 212: 1394–1396 (1981).

    Google Scholar 

  61. Newcomb W, Sippel D, Peterson RL: The early morphogenesis of Glycine max and Pisum sativum root nodules. Can J Bot 57: 2603–2616 (1979).

    Google Scholar 

  62. Newcomb W: A correlated light electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules. Can J Bot 54: 2163–2186 (1976).

    Google Scholar 

  63. Newcomb W: Nodule morphogenesis and differentiation. Int Rev Cytol (Suppl 13): 247–297 (1981).

  64. Nguyen T, Zelechowska M, Foster V, Bergmann H, Verma DPS. Primary structure of the soybean nodulin-35 gene encoding uricase II localized in the peroxisomes of uninfected cells of nodules. Proc Natl Acad Sci USA 82: 5040–5044 (1985).

    Google Scholar 

  65. Norris JH, Marcel LA, Hirsch AM: Nodulin gene expression in effective alfalfa nodules and in nodules arrested at three different stages of development. Plant Physiol 88: 321–328 (1988).

    Google Scholar 

  66. Peters NK, Frost JW, Long SR: A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977 (1986).

    PubMed  Google Scholar 

  67. Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG: Flavones induce expression of nodulation genes in Rhizobium. Nature 323: 632–633 (1986).

    Google Scholar 

  68. Reuber TL, Reed JW, Glazebrook J, Urzainqui A, Walker GC: Analyses of the roles of R. meliloti exopolysaccharides in nodulation. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 181–188. Kluwer Academic Publishers, Dordrecht/Boston/London (1991).

    Google Scholar 

  69. Roche P, Lerouge P, Ponthus C, Promé JC: Structural determination of bacterial nodulation factors involved in the Rhizobium meliloti-alfalfa symbiosis. J Biol Chem (in press).

  70. Roche P, Lerouge P, Promé JC, Faucher C, Vasse J, Maillet F, Camut S, DeBilly F, Dénarié J, Truchet G: NodRm-1, a sulphated lipo-oligosaccharide signal of Rhizobium meliloti elicits hair deformation, cortical cell division and nodule organogenesis on alfalfa roots. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 119–126 Kluwer Academic Publishers, Dordrecht/Boston/London (1991).

    Google Scholar 

  71. Roth E, Jean K, Stacey G: Homology in endosymbiotic systems: the term ‘symbiosome’. In: Palacios R, Verma DPS (eds) Molecular Genetics of Plant-Microbe Interactions, pp. 220–225. APS Press, St. Paul, MN (1988).

    Google Scholar 

  72. Sandal NN, Bojsen K, Marcker KA. A small family of nodule specific genes from soybean. Nucl Acids Res 15: 1507–1519 (1987).

    PubMed  Google Scholar 

  73. Sandal NN, Marcker KA: Soybean nodulin-26 is homologous to the major intrinsic protein of the bovine lens fiber membrane. Nucl Acids Res 19: 9347 (1988).

    Google Scholar 

  74. Schell JS. Transgenic plants as tools to study the molecular organisation of plant genes. Science 237: 1176–1183 (1987).

    Google Scholar 

  75. Scheres B, van deWiel C, Zalensky A, Horváth B, Spaink H, vanEck H, Zwartkruis F, Wolters AM, Gloudemans T, vanKammen A, Bisseling T: The ENOD12 gene product is involved in the infection process during pea-Rhizobium interaction. Cell 60: 281–294 (1990).

    Article  PubMed  Google Scholar 

  76. Scheres B, vanEngelen F, van derKnaap F, van deWiel C, vanKammen A, Bisseling T: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 8: 687–700 (1990).

    Article  Google Scholar 

  77. Schlaman HRM, Horváth B, Vijgenboom E, Okker R, Lugtenberg BJJ: Evidence for a new negative regulation mechanism involved in the suppression of nodulation gene expression of Rhizobium leguminosarum bv. viciae. J Bact (in press).

  78. Schwedock J, Long SR: ATP sulphurylase activity of the NodP and NodQ gene products of Rhizobium meliloti. Nature 348: 644–646 (1990).

    Article  PubMed  Google Scholar 

  79. Sharma BS, Signer ER: Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in plants revealed by transposon Tn5-gusA. Genes Devel 4: 344–356 (1990).

    PubMed  Google Scholar 

  80. Spaink HP, Geiger O, Sheeley DM, vanBrussel AAN, York WS, Reinhold VN, Lugtenberg BJJ, Kennedy EP: The biochemical function of the Rhizobium leguminosarum proteins involved in the production of host specific signal molecules. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 1, pp. 142–149. Kluwer Academic Publishers, Dordrecht/Boston/London (1991).

    Google Scholar 

  81. Spaink HP, Weinman J, Djordjevic MA, Wijffelman CA, Okker RJH, Lugtenberg BJJ: Genetic analysis and cellular localization of the Rhizobium host specificity-determining NodE protein. EMBO 8: 2811–2818 (1989).

    Google Scholar 

  82. Stougaard J, Joergensen JE, Christensen T, Kühle A, Marcker KA. Interdependence and nodule-specificity of cis-acting regulatory elements in soybean leghemoglobin lbc3 and N23 gene promoters. Mol Gen Genet 220: 353–360 (1990).

    PubMed  Google Scholar 

  83. Stougaard J, Petersen TE, Marcker KA: Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus. Proc Natl Acad Sci USA 84: 5754–5757 (1987).

    Google Scholar 

  84. Stougaard J, Sandal NN, Grøn A, Köhle A, Marcker KA: 5′ analysis of the soybean leghemoglobin lbc3 gene: regulatory elements required for promoter activity and organ specificity. EMBO J 6: 3565–3569 (1987).

    Google Scholar 

  85. Szabados L, Ratet P, Grunenberg B, deBruijn FJ: Functional analysis of the Sesbania rostrata leghemoglobin glb gene 5′ upstream region in transgenic Lotus corniculatus and Nicotiana tabacum plants. Plant Cell 2: 973–986 (1990).

    Article  PubMed  Google Scholar 

  86. Tjepkema JD, Yocum CS: Measurement of oxygen partial pressure within soybean nodules by oxygen microelectrodes. Planta 119: 351–360 (1974).

    Google Scholar 

  87. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, DeBilly F, Promé J-C, Dénarié J: Sulphated lipooligosaccharide signals of R. meliloti elicit root nodule organogenesis and alfalfa. Nature 351: 670–673 (1991).

    Article  Google Scholar 

  88. Turgeon BG, Bauer WD: Early events in the infection of soybean by Rhizobium japonicum. Time course and cytology of the initial infection process. Can J Bot 60: 152–161 (1982).

    Google Scholar 

  89. Van denBosch KA, Bradley DJ, Knox JP, Perotto S, Butcher GW, Brewin NJ. Common components of the infection thread matrix and the intercellular space identified by immunochemical analysis of pea nodules and uninfected roots. EMBO J 8: 335–342 (1989).

    Google Scholar 

  90. van deWiel C, Norris J, Bochenek B, Bisseling T, Hirsch AM: Nodulin gene expression and ENOD2 localization in effective, nitrogen-fixing and ineffective, bacteria-free nodules of alfalfa. Plant Cell 2: 1009–1017 (1990).

    Article  PubMed  Google Scholar 

  91. van deWiel C, Scheres B, Franssen H, vanLierop MJ, vanLammeren A, vanKammen A, Bisseling T: The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J 9: 1–7 (1990).

    PubMed  Google Scholar 

  92. vanKammen A: Suggested nomenclature for plant genes involved in nodulation and symbiosis. Plant Mol Biol Rep 2: 43–45 (1984).

    Google Scholar 

  93. Vasse J, DeBilly F, Camut S, Truchet G: Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bact 172: 4295–4306 (1990).

    PubMed  Google Scholar 

  94. Verma DPS: Endosymbiosis of Rhizobium: Internalization of the ‘extracellular compartment’ and metabolites exchange. In: Gresshoff P, Roth E, Stacey G, Newton WB (eds) Nitrogen Fixation: Achievements and Objectives, pp. 235–237. Chapman Hall. New York/London (1990).

    Google Scholar 

  95. Verma DPS, Legocki RP, Auger S: Expression of nodule-specific host genes in soybean. In: Gibson AH, Newton WE (eds) Current Perspectives in Nitrogen Fixation, pp. 205–209. Australian Academy of Science, Canberra (1981).

    Google Scholar 

  96. Verma DPS, Long SR: The molecular biology of Rhizobium-legume symbiosis. Int Rev Cytol (Suppl 14): 211–245 (1983).

  97. Vincent JM: Factors controlling the legume-Rhizobium symbiosis. In: Newton WE, Orme-Johnson WH (eds) Nitrogen Fixation II, pp. 103–129. University Park Press, Baltimore (1980).

    Google Scholar 

  98. Witty JF, Minchin FR, Shøt L, Sheehy JE: Nitrogen fixation and oxygen in legume root nodules. Oxford Surv Plant Cel Biol 3: 275–315 (1986).

    Google Scholar 

  99. Yang WC, Horváth B, Hontelez J, van Kammen A, Bisseling T: In situ hybridization of Rhizobium mRNAs in pea root nodules; nifA and nifH mRNA localization. Mol Plant-Micr Inter (in press) (1991).

  100. Yang WC, Canter Cremers HCJ, Hogendijk P, Batley M, Wijffelman CA, van Kammen A, Bisseling T: The role of chalcone synthase in pea nodules formed by wild type and β(1–2) glucan mutants of Rhizobium leguminosarum bv. viciae. Submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franssen, H.J., Vijn, I., Yang, W.C. et al. Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol Biol 19, 89–107 (1992). https://doi.org/10.1007/BF00015608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00015608

Key words

Navigation