Skip to main content
Log in

Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Rhizobium etli is a microsymbiont of plants of the genus Phaseolus. Using mass spectrometry we have identified the lipo-chitin oligosaccharides (LCOs) that are produced by R. etli strain CE3. They are N-acetylglucosamine pentasaccharides of which the non-reducing residue is N-methylated and N-acylated with cis-vaccenic acid (C18:1) or stearic acid (C18:0) and carries a carbamoyl group at C4. The reducing residue is substituted at the C6 position with O-acetylfucose. Analysis of their biological activity on the host plant Phaseolus vulgaris shows that these LCOs can elicit the formation of nodule primordia which develop to the stage where vascular bundles are formed. The formation of complete nodule structures, including an organized vascular tissue, is never observed. Considering the very close resemblance of the R. etli LCO structures to those of R. loti (I. M. López-Lara, J. D. J. van den Berg, J. E. Thomas Oates, J. Glushka, B. J. J. Lugtenberg, H. P. Spaink, Mol Microbiol 15: 627–638, 1995) we tested the ability of R. etli strains to nodulate various Lotus species and of R. loti to nodulate P. vulgaris. The results show that R. etli is indeed able to nodulate Lotus plants. However, several Lotus species are only nodulated when an additional flavonoid independent transcription activator (FITA) nodD gene is provided. Phaseolus plants can also be nodulated by R. loti bacteria, but only when the bacteria contain a FITA nodD gene. Apparently, the type of nod gene inducers secreted by the plants is the major basis for the separation of Phaseolus and Lotus into different cross inoculation groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bec-Ferté MP, Krishnan HB, Promé D, Savagnac A, Pueppke SG, Promé JC: Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257. Biochemistry 33: 11782–11788 (1994).

    Google Scholar 

  2. Carlson RW, Sanjuan J, Bhat R, Glushka J, Spaink HP, Wijfjes HM, van Brussel AN, Stokkermans TJW, Peters K, Stacey G: The structures and biological signals produced by type I and type II strains of Bradyrhizobium japonicum. J Biol Chem 268: 18372–18381 (1993).

    PubMed  Google Scholar 

  3. Dénarié J, Cullimore J: Lipo-oligosaccharide nodulation factors: A new class of signaling molecules mediating recognition and morphogenesis. Cell 74: 951–954 (1993).

    Article  PubMed  Google Scholar 

  4. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  5. Fåhraeus G: The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16: 374–381 (1957).

    PubMed  Google Scholar 

  6. Ferro M, Demont N, Promé D, Promé J-C, Boivin C, Dreyfus D: Detection and characterization of Nod factors by MALDI, LSIMS and tandem mass spectrometry. Proceedings of the 13th International Mass Spectrometry Conference (Budapest, Hungary, 29 August-2 September 1994), Poster Th D3 (1994).

  7. Franssen HJ, Vijn I, Yang WC, Bisseling T: Developmental aspects of teh Rhizobium-legume symbiosis. Plant Mol Biol 19: 89–107 (1992).

    Article  PubMed  Google Scholar 

  8. Geelen D, Mergaert P, Geremia RA, Goormachtig S, Van Montagu M, Holsters M: Identification of nodSUIJ genes in Nod locus 1 of Azorhizobium caulinodans: evidence that nodS encodes a methyltransferase involved in Nod factor modification. Mol Microbiol 9: 145–154 (1993).

    PubMed  Google Scholar 

  9. Göttfert M: Regulation and function of rhizobial nodulation genes. FEMS Microbiol Rev 104: 39–64 (1993).

    Article  Google Scholar 

  10. Heidstra R, Geurts R, Franssen H, Spaink HP, van Kammen A, Bisseling T: Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol 105: 787–797 (1994).

    PubMed  Google Scholar 

  11. Lederkremer RM, Lima C, Ramirez MI, Ferguson MAJ, Homans SW, Thomas-Oates J: Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes. J Biol Chem 266: 23670–23675 (1991).

    PubMed  Google Scholar 

  12. Lewin A, Cervantes E, Chee-Hoong W, Broughton W: nodSU, two new nod genes of the broad host range Rhizobium strain NGR234 encode host-specific nodulation of the tropical tree Leucaena leucocephala. Mol Plant-Microbe Interact 3: 317–326 (1990).

    PubMed  Google Scholar 

  13. López-Lara IM, van den Berg JDJ, Thomas Oates JE, Glushka J, Lugtenberg BJJ, Spaink HP: Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti. Mol Microbiol 15: 627–638 (1995).

    PubMed  Google Scholar 

  14. López-Lara IM, van der Drift KMGM, van Brusse-1 AAN, Haverkamp J, Lugtenberg BJJ, Thomas-Oates JE, Spaink HP: Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad host range Rhizobium strain GRH2. Plant Mol Biol, co-submitted with this paper (1995).

  15. Poupot R, Martínez-Romero E, Promé JC: Nodulation factors from Rhizobium tropici are sulfated or nonsulfated chitopentasaccharides containing an N-methyl-N-acylglu-cosaminyl terminus. Biochemistry 32: 10430–10435 (1993).

    PubMed  Google Scholar 

  16. Price NPJ, Relié B, Talmont F, Lewin A, Promé D, Pueppke SG, Maillet F, Dénarié J, Promé J-C, Broughton WJ: Broad-host-range Rhizobium species strain NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol Microbiol 6: 3575–3584 (1992).

    PubMed  Google Scholar 

  17. Relić B, Talmont F, Kopcinska J, Golinowski W, Promé J-C, Broughton WJ: Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atropurpureum. Mol Plant-Microbe Interact 6: 764–774 (1993).

    PubMed  Google Scholar 

  18. Schultze M, Kondorosi E, Ratet P, Buiré M, Kondorosi A: Cell and molecular biology of Rhizobium-plant interactions. Int Rev Cytol 156: 1–75 (1994).

    Google Scholar 

  19. Segovia L, Young JPW, Martínez-Romero E: Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains in a new species, Rhizobium etli sp. nov. Int Systematic Bact 43: 374–377 (1993).

    Google Scholar 

  20. Spaink HP: Rhizobial lipo-oligosaccharides: Answers and questions. Plant Mol Biol 20: 977–986 (1992).

    PubMed  Google Scholar 

  21. Spaink HP, Bloemberg GB, van Brussel AAN, Lugtenberg BJJ, van der Drift KMGM, Haverkamp J, Thomas-Oates JE: Host specificity of Rhizobium leguminosarum is determined by the hydrophobicity of highly unsaturated fatty acyl moieties of the nodulation factors. Mol Plant-Microbe Interact 8: 155–164 (1995).

    Google Scholar 

  22. Spaink HP, Lugtenberg BJJ: Role of rhizobial lipo-chitin oligosaccharide signal molecules in root nodule organogenesis. Plant Mol Biol 26: 1413–1422 (1994).

    Article  PubMed  Google Scholar 

  23. Spaink HP, Okker RJH, Wijffelman CA, Pees E, Lugtenberg BJJ: Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Mol Biol 9: 29–37 (1987).

    Google Scholar 

  24. Spaink HP, Sheeley DM, Van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130 (1991).

    PubMed  Google Scholar 

  25. Stokkermans TJW, Peters NK: Bradyrhizobium elkanii lipo-oligosaccharides signals induce complete nodules structures on Glycine soja Siebold et Zucc. Planta 193: 413–420 (1994).

    Article  PubMed  Google Scholar 

  26. Taté R, Patriarca EJ, Riccio A, Defez R, Iaccarino M: Development of Phaseolus vulgaris root nodules. Mol Plant-Microbe Interact 7: 582–589 (1994).

    Google Scholar 

  27. Thomas-Oates JE, van den Berg JDJ, Bloemberg GV, van der Drift KMGM, Geiger O, López-Lara IM, Rademaker GJ, Spaink HP: Structural determination and biosynthetic studies of the Nod metabolites: the lipo-chitin oligosaccharides. In: Burlingame AL, Carr SA (eds) Mass Spectrometry in the Health and Life Sciences vol III, Humana Press, in press (1995).

  28. Truchet G, Camut S, de Billy F, Odorico R, Vasse J: The Rhizobium-legume symbiosis: two methods to discriminate between nodules and other root derived structures. Protoplasma 149: 82–88 (1989).

    Google Scholar 

  29. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Promé J-C, Dénarié J: Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673 (1991).

    Article  Google Scholar 

  30. van Brussel AAN, Bakhuizen R, van Spronsen P, Spaink HP, Tak T, Lugtenberg BJJ, Kijne J: Induction of preinfection thead structures in the host plant by lipo-oligosaccharides of Rhizobium. Science 257: 70–72 (1992).

    Google Scholar 

  31. Vásquez M, Dávalos A, de las Peñas A, Sánchez F, Quinto C: Novel organization of the common nodulation genes in Rhizobium leguminosarum bv. phaseoli strains. J Bact 173: 1250–1258 (1991).

    PubMed  Google Scholar 

  32. Villalobos M, Nava N, Vazquez M, Quinto C: Nucleotide sequence of the Rhizobium etli nodS gene. Gene 150: 201–202 (1994).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología niversidad Nacional Autónoma de México

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cárdenas, L., Domínguez, J., Quinto, C. et al. Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli . Plant Mol Biol 29, 453–464 (1995). https://doi.org/10.1007/BF00020977

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020977

Key words

Navigation