Skip to main content
Log in

Weighted averaging, logistic regression and the Gaussian response model

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

The indicator value and ecological amplitude of a species with respect to a quantitative environmental variable can be estimated from data on species occurrence and environment. A simple weighted averaging (WA) method for estimating these parameters is compared by simulation with the more elaborate method of Gaussian logistic regression (GLR), a form of the generalized linear model which fits a Gaussian-like species response curve to presence-absence data. The indicator value and the ecological amplitude are expressed by two parameters of this curve, termed the optimum and the tolerance, respectively. When a species is rare and has a narrow ecological amplitude — or when the distribution of quadrats along the environmental variable is reasonably even over the species' range, and the number of quadrats is small — then WA is shown to approach GLR in efficiency. Otherwise WA may give misleading results. GLR is therefore preferred as a practical method for summarizing species' distributions along environmental gradients. Formulas are given to calculate species optima and tolerances (with their standard errors), and a confidence interval for the optimum from the GLR output of standard statistical packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvey, N. G., et al., 1977. GENSTAT: a general statistical program. Rothamsted Experimental Station, Harpenden, England.

    Google Scholar 

  • Ashby, E., 1936. Statistical ecology. Bot. Rev. 2: 221–235.

    Google Scholar 

  • Austin, M. P., 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Austin, M. P., Cunningham, R. B. & Fleming, P. M., 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.

    Google Scholar 

  • Baker, R. J. & Nelder, J. A., 1978. The GLIM System, Release 3. Numerical Algorithms Groups, Oxford.

    Google Scholar 

  • Barr, A. J., et al., 1982. SAS User's Guide: Statistics, 1982 edition. SAS Institue Inc., Cary, 584 pp.

    Google Scholar 

  • Breslow, N. E. & Day, N. E., 1980. Statistical Methods in Cancer Research. Vol. 1. The Analysis of Case-Control Studies. IARC Scientific Publication, nr. 32, Lyon, 338 pp.

    Google Scholar 

  • Cox, D. R., 1970. The Analysis of Binary Data. Methuen, London, 142 pp.

    Google Scholar 

  • Dixon, W. J., 1981. BMDP Statistical Software, University of California Press, Berkeley, 726 pp.

    Google Scholar 

  • Dobson, A. J., 1983. An Introduction to Statistical Modelling. Chapman & Hall, London, 125 pp.

    Google Scholar 

  • Ellenberg, H., 1979. Zeigerwerte der Gefässpflanzen Mitteleuropas. 2nd ed. Scripta Geobotanica 9, Göttingen, 122 pp.

  • Ellenberg, H., 1982. Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. 3rd ed. Ulmer Verlag, Stuttgart, 989 pp.

    Google Scholar 

  • Finney, D. J., 1964. Statistical Methods in Biological Assay. Griffin, London, 668 pp.

    Google Scholar 

  • Gasse, F. & Tekaia, F., 1983. Transfer functions for estimating paleoecological conditions (pH) from East African diatoms. Hydrobiologia 103: 85–90.

    Google Scholar 

  • Goff, F. G. & Cottam, G., 1967. Gradient analysis: the use of species and synthetic indices. Ecology 48: 783–806.

    Google Scholar 

  • Greig-Smith, P., 1983. Quantitative Plant Ecology, 3rd ed. Butterworths, London, 359 pp.

    Google Scholar 

  • Gremmen, N. J. M., Vreugdenhil, A. & Hermelink, P., 1983. Vegetatiekartering West-Brabant: de methodiek. Report 83/21 of the Research Institute for Nature Management, Leersum, The Netherlands, 58 pp.

  • Heukels, H. & Meijden, R. van der, 1983. Flora van Nederland. 20th ed. Wolters-Noordhoff, Groningen, 583 pp.

    Google Scholar 

  • Hill, M. O., 1973. Reciprocal averaging: an eigenvector method of ordination. J. Ecol. 61: 237–249.

    Google Scholar 

  • Hörnström, E., 1981. Trophic characterization of lakes by means of qualitative phytoplankton analysis. Limnologica (Berlin) 13: 249–261.

    Google Scholar 

  • Kruijne, A. A., Vries, D. M. de & Mooi, H., 1967. Bijdrage tot de oecologie van de Nederlandse graslandplanten (with english summary). Versl. Landbouwk. Onderz. 696. Pudoc, Wageningen, 65 pp.

    Google Scholar 

  • Lange, L. de, 1972. An ecological study of ditch vegetation in the Netherlands. Ph.D. thesis, University of Amsterdam, Amsterdam, 112 pp.

  • McCullagh, P. & Nelder, J. A., 1983. Generalized Linear Models. Chapman & Hall, London, 260 pp.

    Google Scholar 

  • Mohler, C. L., 1981. Effect of sampling pattern on estimation of species distributions along gradients. Vegetatio 54: 97–102.

    Google Scholar 

  • Reijnen, M. J. S. M., Vreugdenhil, A. & Beije, H. M., 1981. Vegetatie en grondwaterwinning in het gebied ten zuiden van Breda. Report 81/24 of the Research Institute for Nature Management, Leersum, The Netherlands, 140 pp.

  • Salden, N., 1978. Beiträge zur Ökologie der Diatomeen (Bacillariophyceae) des Süsswassers. Decheniana, Beiheft 22: 1–238.

    Google Scholar 

  • Ter Braak, C. J. F., in press. Correspondence analysis of incidence and abundance data, properties in terms of a unimodal response model. Biometrics 41.

  • Ter Braak, C. J. F. & Barendregt, L. G., in press. Weighted aver-aging of species indicator values: its efficiency in environmental calibration. Math. Biosci.

  • Whittaker, R. H., 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Nomenclature follows Heukels-van der Meijden (1983).

We would like to thank Drs I. C. Prentice, N. J. M. Gremmen and J. A. Hoekstra for comments on the paper. We are grateful to Ir. Th. A. de Boer (CABO, Wageningen) for permission to use the data of the first example.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Braak, C.J.F., Looman, C.W.N. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65, 3–11 (1986). https://doi.org/10.1007/BF00032121

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032121

Keywords

Navigation