Skip to main content
Log in

Regulation of gene expression in chloroplasts of higher plants

  • Organelle
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Chloroplasts contain their own genetic system which has a number of prokaryotic as well as some eukaryotic features. Most chloroplast genes of higher plants are organized in clusters and are cotranscribed as polycistronic pre-RNAs which are generally processes into many shorter overlapping RNA species, each of which accumulates of steady-state RNA levels. This indicates that posttranscriptional RNA processing of primary transcripts is an important step in the control of chloroplast gene expression. Chloroplast RNA processing steps include RNA cleavage/trimming, RNA splicing, ENA editing and RNA stabilization. Several chloroplast genes are interrupted by introns and therefore require processing for gene function. In tobacco chrloroplasts, 18 genes contain introns, six for tRNA genes and 12 for protein-encoding genes. A number of specific proteins and RNA factors are believed to be involved in splicing and maturation of pre-RNAs in chrloroplasts. Processing enzymes and RNA-binding proteins which could be involved in posttranscriptional steps have been identified in the last several years. Our current knowledge of the regulation of gene expression in chloroplasts of higher plants is overviewed and further studies on this matter are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams CC, Stern DB: Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucl Acids Res 18: 6003–6010 (1990).

    Google Scholar 

  2. Allison LA, Maliga P: Light-responsive and transcription-enhancing elements regulate the plastid psbD core promoter. EMBO J 14: 3721–3730 (1995).

    Google Scholar 

  3. Barkan A: Tissue-dependent plastid RNA splicing in maize: transcripts from four plastid genes are predominantly unspliced in leaf meristems and roots. Plant Cell 1: 437–445 (1989).

    Google Scholar 

  4. Barkan A: Proteins encoded by a complex chloroplast transcription unit are each translated from both monocistronic and polycistronic mRNAs. EMBO J 7: 2637–2644 (1988).

    Google Scholar 

  5. Barkan A: Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5: 389–402 (1993).

    Google Scholar 

  6. Barkan A, Miles D, Taylor WC: Chloroplast gene expression in nuclear, photosynthetic mutants of maize. EMBO J 5: 1421–1427 (1986).

    Google Scholar 

  7. Barkan A, Walker M, Nolasco M, Johnson D: A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNA and provides evidence for the differential translation of alternative mRNA forms. EMBO J 13: 3170–3181 (1994).

    Google Scholar 

  8. Bar-Zvi D, Shagan T, Schindler U, Cashmore AR: RNP-T, a ribonucleoprotein from Arabidopsis thaliana, contains two RNP-80 motifs and a novel acidic repeat arranged in an α-helix conformation. Plant Mol Biol 20: 833–838 (1992).

    Google Scholar 

  9. Berends Sexton T, Christopher DA, Mullet JE: Light-induced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J 9: 4484–4494 (1990).

    Google Scholar 

  10. Berends Sexton T, Jones JT, Mullet JE: Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU). Curr Genet 17: 445–454 (1990).

    Google Scholar 

  11. Bock R, Maliga P: Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids. Nucl Acids Res 23: 2544–2547 (1995).

    Google Scholar 

  12. Breiteneder H, Michalowski CB, Bohnert HJ: Environmental stress-mediated differential 3′ end formation of chloroplast RNA-binding protein transcripts. Plant Mol Biol 26: 833–849 (1994).

    Google Scholar 

  13. Bülow S, Link G: Sigma-like activity from mustard (Sinapis alba L.) chloroplasts conferring DNA-binding and transcription specificity to E. coli core RNA polymerase. Plant Mol Biol 10: 349–357 (1988).

    Google Scholar 

  14. Chen Q, Adams CC, Usack L, Yang J, Monde R-A, Stern D: An AU-rich element in the 3′ untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation. Mol Cell Biol 15: 2010–2018 (1995).

    Google Scholar 

  15. Chen H-C, Stern D: Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. Biol Chem 266: 24205–24211 (1991).

    Google Scholar 

  16. Chen H-C, Stern D: Specific binding of chloroplast proteins in vitro to the 3′ untranslated region of spinach chloroplast petD mRNA. Mol Cell Biol 11: 4380–4388 (1991).

    Google Scholar 

  17. Cheng S-H, Cline K, DeLisle AJ: An Arabidopsis chloroplast RNA-binding protein gene encodes multiple mRNAs with different 5′ ends. Plant Physiol 106: 303–311 (1994).

    Google Scholar 

  18. Cook WB, Walker JC: Identification of a maize nucleic acid binding protein (NBP) belonging to a family of nuclear-encoded chloroplast proteins. Nucl Acids Res 20: 359–364 (1992).

    Google Scholar 

  19. Copertino DW, Hallick RB: Group II and group III introns of twintrons: potential relationships with nuclear pre-mRNA introns. Trends Biochem Sci 18: 467–471 (1993).

    Google Scholar 

  20. Delisle AJ: RNA-binding protein from Arabidopsis. Plant Physiol 102: 313–314 (1993).

    Google Scholar 

  21. Deng X-W, Gruissem W: Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell 49: 379–387 (1987).

    Google Scholar 

  22. Deshpande NN, Hollingsworth M, Herrin DL: The atpF group-II intron-containing gene from spinach chloroplasts is not spliced in transgenic Chlamydomonas chloroplasts. Curr Genet 28: 122–127 (1995).

    Google Scholar 

  23. Didier DK, Klee HJ: Identification of an Arabidopsis DNA-binding protein with homology to nucleolin. Plant Mol Biol 18: 977–979 (1992).

    Google Scholar 

  24. Du Jardin P, Portetelle D, Harvengt L, Dumont M, Wathelet B: Expression of intron-encoded maturase-like polypeptides in potato chloroplasts. Curr Genet 25: 158–163 (1994).

    Google Scholar 

  25. Eisermann A, Tiller K, Link G: In vitro transcription and DNA binding characteristics of chloroplast and etioplast extracts from mustard (Sinapis alba) indicate differential usage of the psbA promoter. EMBO J 9: 3981–3987 (1990).

    Google Scholar 

  26. Filipowicz W, Gniadkowski M, Klahre U, Liu HX: Pre-mRNA splicing in plants. In: Lamond AI (ed) Pre-mRNA Processing, pp. 65–77. RG Landes Co. (1995).

  27. Gruissem W, Tonkyn JC: Control mechanisms of plastid gene expression. Crit Rev Plant Sci 12: 19–55 (1993).

    Google Scholar 

  28. Hayes R., Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W: Chloroplast mRNA 3′ end processing by a high molecular weight protein complex is regulated by nuclear-encoded RNA-binding proteins. EMBO J 15: 1132–1141 (1996).

    Google Scholar 

  29. Herrmann RG, Westhoff P, Link G: Biogenesis of plastids in higher plants. In: Herrmann RG (ed) Cell Organelles, pp. 276–349. Springer-Verlag, Wien/New York (1992).

    Google Scholar 

  30. Hess WR, Hoch B, Zeltz P, Hübschmann T, Kössel H, Börner T: Inefficient rpl2 splicing in barley mutants with ribosome-deficient plastids. Plant Cell 6: 1455–1465 (1994).

    Google Scholar 

  31. Hess WR, Prombona A, Fieder B, Subramanian AR, Borner T: Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12: 563–571 (1993).

    Google Scholar 

  32. Hübschmann T, Hess WR, Börner T: Impaired splicing of the rps12 transcript in ribosome-deficient plastids. Plant Mol Biol 30: 109–123 (1996).

    Google Scholar 

  33. Igloi GL, Kössel H: The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci 10: 525–558 (1992).

    Google Scholar 

  34. Iratni R, Baeza L, Andreeva A, Mache R, Lerbs-Mache S: Regulation of rDNA transcription in chloroplasts: promoter exclusion by constitutive repression. Genes Devel 8: 2928–2938 (1994).

    Google Scholar 

  35. Kanekatsu M, Ezumi A, Nakamura T, Ohtsuki K: Chloroplast ribonucleoproteins (RNPs) as phosphate acceptors for casein kinase. II. Purification by ssDNA-cellulose column chromatography. Plant Cell Physiol 36: 1649–1656 (1995).

    Google Scholar 

  36. Kapoor S, Suzuki JY, Sugiura M: Functional significance of a novel (basal) type promoter in plastids: evidence for differential promoter utilization by plastid- and non-plastid-encoded RNA polymerases. (Submitted.)

  37. Kawagoe Y, Achberger EC, Bartlett SG, Murai N: A nuclear-encoded chloroplast RNP-80 protein from bean binds to a thymine-rich sequence of single-stranded DNA. Plant Sci 111: 199–207 (1995).

    Google Scholar 

  38. Kim J, Mullet JE: Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation. Plant Mol Biol 25: 437–448 (1994).

    Google Scholar 

  39. Kim J-K, Hollingsworth J: Splicing of group II introns in spinach chloroplasts (in vivo): analysis of lariat formation. Curr Genet 23: 175–180 (1993).

    Google Scholar 

  40. Klaff P: mRNA decay in spinach chloroplasts: psbA mRNA degradation is initiated by endonucleolytic cleavages within the coding region. Nucl Acids Res 23: 4885–4892 (1995).

    Google Scholar 

  41. Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U: The chloroplast genome of a chlorophyll a+c-containing alga, Odontella sinensis. Plant Mol Biol Rep 13: 336–342 (1995).

    Google Scholar 

  42. Lerbs S, Brautigam E, Mache R: DNA-dependent RNA polymerase of spinach chloroplasts: characterization of α-like and σ-like polypeptides. Mol Gen Genet 211: 459–464 (1988).

    Google Scholar 

  43. Lerbs-Mache S: The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proc Natl Acad Sci USA 90: 5509–5513 (1993).

    Google Scholar 

  44. Li Y, Sugiura M: Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J 9: 3059–3066 (1990).

    Google Scholar 

  45. Li Y, Sugiura M: Nucleic acid-binding specificities of tobacco chloroplast ribonucleoproteins. Nucl Acids Res 19: 2893–2896 (1991).

    Google Scholar 

  46. Liere K, Link G: RNA-binding activity of the matK protein encoded by the chloroplast trnK intron from mustard (Sinapis alba L.). Nucl Acids Res 23: 917–921 (1995).

    Google Scholar 

  47. Lisitsky I, Schuster G: Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucl Acids Res 23: 2506–2511 (1995).

    Google Scholar 

  48. Lisitsky I, Liveanu V, Schuster G: RNA-binding activities of the different domains of a spinach chloroplast ribonucleoprotein. Nucl Acids Res 22: 4719–4724 (1994).

    Google Scholar 

  49. Lisitsky I, Liveanu V, Schuster G: RNA-binding characteristics of a ribonucleoprotein from spinach chloroplast. Plant Physiol 107: 933–941 (1995).

    Google Scholar 

  50. Mieszczak M, Klahre U, Levy JH, Goodall GJ, Filipowicz W: Multiple plant RNA binding proteins identified by PCR: expression of cDNAs encoding RNA binding proteins targeted to chloroplasts in Nicotiana plumbaginifolia. Mol Gen Genet 234: 390–400 (1992).

    Google Scholar 

  51. Mullet JE: Dynamic regulation of chloroplast transcription. Plant Physiol 103: 309–313 (1993).

    Google Scholar 

  52. Mullet JE, Klein RR: Transcription and RNA stability are important determinants of higher plant chloroplast RNA levels. EMBO J 6: 1571–1579 (1987).

    Google Scholar 

  53. Neuhaus H, Link G: The chloroplast tRNALys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11: 251–257 (1987).

    Google Scholar 

  54. Neuhaus H, Scholz A, Link G: Structure and expression of a split chloroplast gene from mustard (Sinapis alba): ribosomal protein gene rps16 reveals unusual transcriptional features and complex RNA maturation. Curr Genet 15: 63–70 (1989).

    Google Scholar 

  55. Nickelsen J, Link G: Interaction of a 3′ RNA region of the mustard trnK gene with chloroplast proteins. Nucl Acids Res 17: 9637–9648 (1989).

    Google Scholar 

  56. Nickelsen J, Link G: RNA-protein interactions at transcript 3′ ends and evidence for trnK-psbA cotranscription in mustard chloroplasts. Mol Gen Genet 228: 89–96 (1991).

    Google Scholar 

  57. Nickelsen J, Link G: The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3′ end formation in vitro. Plant J 3: 537–544 (1993).

    Google Scholar 

  58. Ohta M, Sugita M, Sugiura M: Three types of nuclear genes encoding chloroplast RNA-binding proteins (cp29, cp31 and cp33) are present in Arabidopsis thaliana: presence of cp31 in chloroplasts and its homologue in nuclei/cytoplasms. Plant Mol Biol 27: 529–539 (1995).

    Google Scholar 

  59. Pfannschmidt T, Link G: Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol Biol 25: 69–81 (1994).

    Google Scholar 

  60. Piechulla B, Gruissem W: Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J 6: 3593–3599 (1987).

    Google Scholar 

  61. Rapp JC, Baumgartner BJ, Mullet J: Quantitative analysis of transcription and RNA levels of 15 barley chloroplast genes, transcription rates and mRNA levels vary over 300-fold; predicted mRNA stabilities vary 30-fold. J Biol Chem 267: 21404–21411 (1992).

    Google Scholar 

  62. Reinbothe S, Reinbothe C, Heintzen C, Seidenbecher C, Parthier B: A methyl jasmonate-induced shift in the length of the 5′ untranslated region impairs translation of the plastid rbcL transcript in barley. EMBO J 12: 1505–1512 (1993).

    Google Scholar 

  63. Reith M, Munholland J: Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13: 333–335 (1995).

    Google Scholar 

  64. Schuster G, Gruissem W: Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10: 1493–1502 (1991).

    Google Scholar 

  65. Shimada H, Sugiura M: Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucl Acids Res 19: 983–995 (1991).

    Google Scholar 

  66. Stern DB, Gruissem W: Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157 (1987).

    Google Scholar 

  67. Stirewalt VL, Michalowski CB, Löffelhardt W, Bohnert HJ, Bryant D: Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13: 327–332 (1995).

    Google Scholar 

  68. Stollar NE, Hollingsworth MJ: Expression of the large ATP synthase gene cluster from spinach chloroplasts. J Plant Physiol 144: 141–149 (1994).

    Google Scholar 

  69. Subbaiah CC, Tewari KK: Purification and characterization of ribonuceoproteins from pea chloroplasts. Eur J Biochem 211: 171–179 (1993).

    Google Scholar 

  70. Sugita M, Shinozaki K, Sugiura M: Tobacco chloroplast tRNALys (UUU) gene contains a 2.5-kilobasepair intron: an open reading frame and a conserved boundary sequence in the intron. Proc Natl Acad Sci USA 82: 3557–3561 (1985).

    Google Scholar 

  71. Sugita M, Sugiura M: Nucleotide sequence and transcription of the gene for the 32,000 dalton thylakoid membrane protein from Nicotiana tabacum. Mol Gen Genet 195: 308–313 (1984).

    Google Scholar 

  72. Sugita M, Sugiura M: The existence of eukaryotic ribonucleo-protein consensus sequence-type RNA-binding proteins in a prokaryote, Synechococcus 6301. Nucl Acids Res 22: 25–31 (1994).

    Google Scholar 

  73. Sugiura M: The chloroplast genome. Plant Mol Biol 19: 149–168 (1992).

    Google Scholar 

  74. Sugiura M: Transcript processing in plastids: trimming, cutting, splicing. In: Bogorad L, Vasdil IK (eds) The Molecular Biology of Plastids. Cell Culture and Somatic Cell Genetics of Plants, vol. 7A, pp. 125–137. Academic Press, San Diego, FL (1991).

    Google Scholar 

  75. Sugiura M, Sugita M, Wakasugi T, Li Y, Ye L, Torazawa K: Organization and expression of the chloroplast genome from higher plants. In: Ishikawa H (ed) Endocytobiology V, pp. 307–312. Tübingen University Press, Tübingen (1993).

    Google Scholar 

  76. Taylor WC: Regulatory interactions between nuclear and plastid genomes. Annu Rev Plant Physiol Plant Mol Biol 40:211–233 (1989).

    Google Scholar 

  77. Tiller K, Link G: Sigma-like transcription factors from mustard (Sinapis alba L.) etioplast are similar in size to, but functionally distinct from, their chloroplast counterparts. Plant Mol Biol 21: 503–513 (1993).

    Google Scholar 

  78. Tiller K, Link G: Phosphorylation and dephosphorylation affect functional characteristis of chloroplast transcription systems from mustard (Sinapis alba L.). EMBO J 12: 1745–1753 (1993).

    Google Scholar 

  79. Troxler RF, Zhang F, Hu J, Bogorad L: Evidence that s factors are components of chloroplast RNA polymerase. Plant Physiol 104: 753–759 (1994).

    Google Scholar 

  80. Vera A, Sugiura M: Chloroplast rRNA transcription from structurally different tandem promoters: an additional of transcriptional novel type promoter. Curr Genet 27: 280–284 (1995).

    Google Scholar 

  81. Vera A, Sugiura M: A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J 13: 2211–2217 (1994).

    Google Scholar 

  82. Wada T, Tunoyama Y, Shiina T, Toyoshima Y: In vitro analysis of light-induced transcription in the wheat psbD/C gene cluster using plastid extracts from dark-grown and short-term-illuminated seedlings. Plant Physiol 104: 1259–1267 (1994).

    Google Scholar 

  83. Wang MJ, Davis NW, Gegenheimer P: Novel mechanisms for maturation of chloroplast transfer RNA precursors. EMBO J 7: 1567–1574 (1988).

    Google Scholar 

  84. Westhoff P, Herrmann RG: Complex RNA maturation in chloroplasts: the psbB operon from spinach. Eur J Biochem 171: 551–564 (1988).

    Google Scholar 

  85. Wolfe KH, Morden CW, Palmer JD: Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652 (1992).

    Google Scholar 

  86. Yamaguchi-Shinozaki K, Shinozaki K, Sugiura M: Processing of precursor tRNAs in a chloroplast lysate. Processing of the 5′-end involves endonucleolytic cleavage by an RNase P-like enzyme and precedes 3′-end maturation. FEBS Lett 215: 132–136 (1987).

    Google Scholar 

  87. Yao WB, Meng BY, Tanaka M, Sugiura M: An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucl Acids Res 17: 9583–9591 (1989).

    Google Scholar 

  88. Ye L, Li Y, Fukami-Kobayashi K, Go M, Konishi T, Watanabe A, Sugiura M: Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucl Acids Res 19: 6485–6490 (1991).

    Google Scholar 

  89. Ye L, Sugiura M: Domains required for nucleic acid binding activities in chloroplast ribonucleoproteins. Nucl Acids Res 20: 6275–6279 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugita, M., Sugiura, M. Regulation of gene expression in chloroplasts of higher plants. Plant Mol Biol 32, 315–326 (1996). https://doi.org/10.1007/BF00039388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039388

Key words

Navigation