Skip to main content
Log in

Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A global data set on the geographic distribution and seasonality of freshwater wetlands and rice paddies has been compiled, comprising information at a spatial resolution of 2.5° by latitude and 5° by longitude. Global coverage of these wetlands total 5.7×106 km2 and 1.3×106 km2, respectively. Natural wetlands have been grouped into six categories following common terminology, i.e. bog, fen, swamp, marsh, floodplain, and shallow lake. Net primary productivity (NPP) of natural wetlands is estimated to be in the range of 4–9×1015 g dry matter per year. Rice paddies have an NPP of about 1.4×1015 g y−1. Extrapolation of measured CH4 emissions in individual ecosystems lead to global methane emission estimates of 40–160 Teragram (1 Tg=1012 g) from natural wetlands and 60–140 Tg from rice paddies per year. The mean emission of 170–200 Tg may come in about equal proportions from natural wetlands and paddies. Major source regions are located in the subtropics between 20 and 30° N, the tropics between 0 and 10° S, and the temperate-boreal region between 50 and 70° N. Emissions are highly seasonal, maximizing during summer in both hemispheres. The wide range of possible CH4 emissions shows the large uncertainties associated with the extrapolation of measured flux rates to global scale. More investigations into ecophysiological principals of methane emissions is warranted to arrive at better source estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajtay, G. L., Ketner, P. and Duvigneaud, P., 1979, Terrestrial primary productivity and phytomass, in B., Bolin, E. T., Degens, St. Kempe, and P., Ketner (eds.) The Global Carbon Cycle (Scope 13), Wiley, Chichester, New York, Brisbane, Toronto, pp. 129–181.

    Google Scholar 

  • Anderson, J. A. R., 1983, The tropical peat swamps of Western Malesia, in A. J. P. Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier Amsterdam, pp. 181–200.

  • Aselmann, I. and Lieth, H., 1983, The implementation of agricultural productivity into existing models of primary productivity, in E. T. Degens, St. Kempe, and H. Soliman (eds.), Transport of Carbon and Minerals in Major World rivers — Part 2, Mitt. Geol.-Paläont. Inst. 55 (University of Hamburg; SCOPE/UNEP Special Vol.), pp. 276–291.

  • Aselmann, I., 1985, Zur Beziehung von Nettoprimärproduktion und Biomasse, Veröffentlichungen d. Naturforschenden Gesellschaft zu Emden v. 1814. Bd. 3, Seric 3.

  • Atlas of Australian Resources, Natural Vegetation, 1976, Division of Natural Mapping, Department of Natural Resources, 2nd series, prepared by J. A. Carnahan.

  • Atlas zur Biogeographie, 1976, J. Schmithüsen (ed.), Bibliographisches Inst. Mannheim, Vienna, Zürich.

  • Baker-Blocker, H., Donahue, T. M., and Mancy, K. H., 1977, Methane flux from wetland areas, Tellus29, 245–250.

    Article  Google Scholar 

  • Bartlett, K. B., Bartlett, D. S., Sebacher, D. I., Harriss, R. C., and Brannon, D. P., 1985a, Sources of atmospheric methane from wetlands, 36th Congress International Astronautical Federation, Stockholm (Sweden), 7–12 Oct., 1985, Pergamon, Oxford.

    Google Scholar 

  • Bartlett, K. B., Harriss, R. C., and Sebacher, D. I., 1985b, Methane flux from coastal salt marshes, J. Geophys. Res.90, 5710–5720.

    Article  Google Scholar 

  • Bartlett, K. B., Crill, P. M., Sebacher, D. I., Harriss, R. C., Wilson, J. O., and Melack, J. M., 1988, Methane flux from the Central Amazonian floodplain, J. Geophys. Res.93, 1571–1582.

    Article  Google Scholar 

  • Bazilevich, N. I., Rodin, L. Ye, and Rozov, N. N., 1971, Geographical aspects of biological productivity, Sov. Geogr. Rev. Transl.12, 293–317.

    Article  Google Scholar 

  • Bingemer, H. G. and Crutzen, P. J., 1987, The production of methane from solid wastes, J. Geophys. Res.92, 2181–2187.

    Article  Google Scholar 

  • Blake, D. R. and Rowland, F. S., 1986, World-wide increase in tropospheric methane, J. Atmos. Chem.4, 43–62.

    Article  Google Scholar 

  • Blake, D. R. and Rowland, F. S., 1988, Continuing worldwide increase in tropospheric methane, 1978 to 1987, Science239, 1129–1131.

    Article  Google Scholar 

  • Botch, M. S. and Masing, V. V., 1983, Mire ecosystems in the U.S.S.R., in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 95–152.

    Google Scholar 

  • Bradbury, I. K. and Grace, J., 1983, Primary production in wetlands, in A. J. P., Gore (ed.), Ecosystems of the World (4A). Mires: Swamp, Bog, Fen, and Moor, Vol. 1, Elsevier, Amsterdam, pp. 285–306.

    Google Scholar 

  • Campbell, E. O., 1983, Mires of Australasia, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 153–180.

    Google Scholar 

  • Cannell, M. G. P., 1982, World Forest Biomass and Primary Production Data, Academic Press, London.

    Google Scholar 

  • Carnahan, J. A., 1976, Commentary to the ‘Atlas of Australian Resources’ (2nd series), 26 pp.

  • Cicerone, R. J. and Shetter, J. D., 1981, Sources of atmospheric methane: Measurements in rice paddies and a discussion, J. Geophys. Res.86, 7203–7209.

    Article  Google Scholar 

  • Cicerone, R. J., Shetter, J. D., and Delwiche, C. C., 1983, Seasonal variation of methane from a California rice paddy, J. Geophys. Res.88, 11022–11024.

    Article  Google Scholar 

  • Cicerone, R. J. and Oremland, R. S., 1988, Biogeochemical aspects of atmospheric methane, Global Geochemical Cycles2, 299–328.

    Article  Google Scholar 

  • Clymo, R. S., 1984, The limits of peat bog growth, Phil. Trans. R. Soc. London, B303, 605–654.

    Article  Google Scholar 

  • Clymo, R. S. and Reddaway, E. J. F., 1971, Productivity of Sphagnum (bog-moss) and peat accumulation, Hydrobiologia12, 181–192.

    Google Scholar 

  • Craig, H. and Chou, C. C., 1982, Methane: The records in polar ice cores, Geophys. Res. Lett.9, 1221–1224.

    Article  Google Scholar 

  • Crill, M. P., Bartlett, K. B., Wilson, J. O., Sebacher, D. I., Harriss, R. C., Melack, J. M., MacIntyre, S., Lesack, L., and Smith-Morill, L., 1988a, Tropospheric methane from an Amazonian flood-plaine lake, J. Geophys. Res.93, 1564–1570.

    Article  Google Scholar 

  • Crill, M. P., Bartlett, K. B., Harriss, R. C., Gorham, E., Verry, E. S. Sebacher, D. I., Madzar, L. and Sanner, W., 1988b, Methane flux from Minnesota peatlands, Global Biogeochemical Cycles2, 371–384.

    Article  Google Scholar 

  • Crutzen, P. J., 1973, A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, Pure Appl. Geophys.106–108, 1385–1399.

    Article  Google Scholar 

  • Crutzen, P. J., 1986, The role of the tropics in atmospheric chemistry, in R. E., Dickinson (ed.), The Geophysiology of Amazonia, Wiley, New York, pp. 107–132.

    Google Scholar 

  • Crutzen, P. J., Delany, A. C., Greenberg, J. P., Haagensen, P., Heidt, L. E., Lueb, R., Pollock, W. H., Seiler, W., Wartburg, A., and Zimmerman, P. R., 1985, Tropospheric chemical composition measurements in Brazil during the dry season, J. Atmos. Chem.2, 233–256.

    Article  Google Scholar 

  • Crutzen, P. J., Aselmann, I., and Seiler, W., 1986, Methane production by domestic animals, other herbivorous fauna, wild ruminants and humans, Tellus38B, 271–284.

    Article  Google Scholar 

  • Dachnowski-Stokes, A. P., 1941, Peat resources in Alaska, Department of Agriculture Technical Bulletin No. 769.

  • Darmstädter, J., Ayres, L. W., Ayres, R. U., Clark, W. C., Crosson, R. P., Crutzen, P. J., Graedel, T. E., McGill, R., Richards, J. F., and Torr, J. A., 1987, Impacts of World Development on Selected Characteristics of the Atmosphere: An Integrated Approach, Oak Ridge National Laboratory, 2 volumes, ORNL/Sub/86–22033/1/V2, Oak Ridge, Tennessee 37831, U.S.A.

    Google Scholar 

  • Davoren, A., 1978, A survey of New Zealand peat resources, Water & Soil Tech. Publ. No. 14.

  • Degens, E. T., 1982, Transport of carbon and minerals in major world rivers — Part 1, Mitt. Geol.-Paläont. Inst. 52 (University of Hamburg; SCOPE/UNEP Special Vol.).

  • Degens, E. T., Kempe, S., and Soliman, H., 1983, Transport of carbon and minerals in major world rivers — Part 2, Mitt. Geol.-Paläont. Inst. 55 (University of Hamburg; SCOPE/UNEP Special Vol.).

  • Degens, E. T., Kempe, S., and Herrera, R., 1985, Transport of carbon and minerals in major world rivers — Part 3, Mitt. Geol-Paläont. Inst. 48 (University of Hamburg; SCOPE/UNEP Special Vol.).

  • DeLaune, R. D., Smith, Ch. J., and Patrick, W. H., 1983, Methane release from Gulf Coast wetlands, Tellus35B, 8–15.

    Article  Google Scholar 

  • Devol, A. H., Richey, J. E., Clark, W. A., King, S. L., and Martinelli, L. A., 1988, Methane emissions to the atmosphere from the Amazon floodplain, J. Geophys.-Res.93, 1583–1592.

    Article  Google Scholar 

  • Ehhalt, D. H., 1974, The atmospheric cycle of methane, Tellus26, 58–70.

    Article  Google Scholar 

  • Ehhalt, D. H. and Schmidt, U., 1978, Sources and sinks of atmospheric methane, Pure Appl. Geophys.116, 452–464.

    Article  Google Scholar 

  • Esser, G., 1984, Significance of carbon pools for the atmospheric CO2: A proposed model structure, in H., Lieth, R., Fantechi and H., Schnitzler (eds.), Interaction between Climate and Biosphere, Swets & Zeitlinger, Lisse, pp. 253–294.

    Google Scholar 

  • Esser, G., Aselmann, I., and Lieth, H., 1982, Modeling the carbon reservoir in the system compartment ‘litter’, in E. T. Degens (ed.), Transport of Carbon and Minerals in Major World Rivers, Mitt. Geol.-Paläont. Inst., 52 (University of Hamburg (SCOPE/UNEP Special Vol.), pp. 39–59.

  • FAO-Unesco, 1978, Soil Map of the World, Vol. VIII, Paris.

  • FAO, 1986, Production Yearbook, Vol. 37, Rome.

  • Fung, I., Prentice, K., Matthews, E., Lerner, J., and Russell, G., 1983, Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchange with the terrestrial biosphere, J. Geophys. Res.88, 1281–1294.

    Article  Google Scholar 

  • Gore, A. J. P., 1983, Introduction (Chp. 1), in A. J. P., Gore (ed.), Ecosystems of the World (4A). Mires: Swamp, Bog, Fen, and Moor, Vol. 1, Elsevier, Amsterdam, pp. 1–34.

    Google Scholar 

  • Harriss, R. C. and Sebacher, D. J., 1981, Methane flux in forested freshwater swamps of the southern United States, Geophys. Res. Lett.8, 1002–1004.

    Article  Google Scholar 

  • Harriss, R. C., Sebacher, D. J., and Day, F. P., 1982, Methane flux in the Great Dismal Swamp, Nature297, 673–674.

    Article  Google Scholar 

  • Harriss, R. C., Gorham, C., Sebacher, D. I., Bartlett, K. B., and Flebbe, P. A., 1985, Methane flux from northern peatlands, Nature315, 652–653.

    Article  Google Scholar 

  • Hofstetter, R. H., 1983, Wetlands in the United States, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 1, Elsevier, Amsterdam, pp. 201–244.

    Google Scholar 

  • Holzapfel-Pschorn, A. and Seiler, W., 1986, Methane emission during a cultivation period from an Italian rice paddy, J. Geophys. Res.91, 11803–11814.

    Article  Google Scholar 

  • Howard-Williams, C. and Thompson, K., 1985, The conservation and management of African wetlands, in P., Denny (ed.), The Ecology and Management of African Wetland Vegetation, Dr. W. Junk Publ., Dordrecht, pp. 203–210.

    Chapter  Google Scholar 

  • Huke, R. E., 1980, South Asia; Rice area planted by culture type, (map 1:1.45 m; prepared at the International Rice Research Institute (IRRI), Manila).

  • Hutton, S. M. and Dincer, T., 1979, Using landsat imagery to study the Okavango Swamp, Botswana, Satellite Hydrology (American Water Resources Association, Proc. Series), Minneapolis, pp. 512–519.

  • Junk, W. J., 1983, Ecology of swamps of the Middle Amazon, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 269–294.

    Google Scholar 

  • Junk, W. J., 1985, The Amazon floodplain — A sink of organic carbon? in E. T. Degens, S. Kempe, and R. Herrera (eds.), Transport of Carbon and Minerals in Major World Rivers-Part 3, Mitt. Geol-Paläont. Inst. 58 (University of Hamburg; SCOPE/UNEP Special Vol.), pp. 267–283.

  • Junk, W. J., 1989, Wetlands of northern South-America, Manuscript (to be published in D. Whigham (ed.): Wetlands of the World).

  • Keller, M., Goreau, T. J., Wofsy, S. C., Kaplan, W. A., and McElroy, M. B., 1983, Production of nitrous oxide and consumption of methane by forest soils, Geophys. Res. Lett.10, 1156–1159.

    Article  Google Scholar 

  • Khalil, M. A. K. and Rasmussen, R. A., 1987, Atmospheric methane: Trends over the last 10.000 years, Atmos. Environ. 21, 2445–2452.

    Article  Google Scholar 

  • Kivinen, E. and Pakarinen, P., 1981, Geographical distribution of peat resources and major peatland complex types in the world, Ann. Acad. Sci. Fennicae A. III132, 5–28.

    Google Scholar 

  • Koyama, T., 1963, Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen, J. Geophys. Res.68, 3971–3973.

    Article  Google Scholar 

  • Levy, H.II, 1971, Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science173, 141–143.

    Article  Google Scholar 

  • Lieth, H., 1975, Primary production of the major vegetation units in the world, in H., Lieth and R. H., Whittaker (eds.), Primary Productivity of the Biosphere (Ecological Studies 14), Springer, New York, Heidelberg, Berlin, pp. 203–215.

    Chapter  Google Scholar 

  • Mallard, G. E. and Frea, J. I., 1972, Methane production in Lake Erie sediments: Temperature and substrate effects, Proc. 15th Conf. Great Lake Res., 1972 (Int. Assoc. Great Lake Res.), pp. 87–93.

  • Manning, M. R., Lowe, D. C., Melhuish, W. H., Sparks, R. J., Wallace, G., and Brenninkmeiyer, C. A. M., 1989, The use of radiocarbon measurements in atmospheric studies, Radiocarbon31, in press.

  • Matthews, E., 1983, Global vegetation and land-use: new high resolution data for climate studies, J. Climate Appl. Meteorol.22, 474–487.

    Article  Google Scholar 

  • Matthews, E. and Fung, I., 1987, Methane emission from natural wetlands: Global distribution, area and environmental characteristics of sources, Global Biogeochemical Cycles1, 61–86.

    Article  Google Scholar 

  • McConnell, J. C., McElroy, M. B., and Wofsy, S. C., 1971, Natural sources of atmospheric CO, Nature233, 187–188.

    Article  Google Scholar 

  • McCraw, J. D., 1979, Peat and Peatlands, An Overview, Soil and Water, Aug., 13–28.

  • Moore, P. D. and Bellamy, D. J., 1974, Peatlands, Elek Science, London.

    Book  Google Scholar 

  • Müller, M. J., 1983, Handbuch ausgewählter Klimastationen der Erde, Forschungstelle Bodenerosion der Universität Trier, Mertesdorf/Ruwertal, Vol. 5.

  • National Atlas of Canada (5th edition), 1986 (Distribution of Wetlands), Department of Energy, Mines and Resources, Geological Service Division, Ottawa.

    Google Scholar 

  • Olson, J. S., Watts, J. A., and Allison, L. J., 1985, Major world ecosystem complexes ranked by carbon in live vegetation, A data base. ORNL-5862 (Data Package and Description) Oak Ridge National Laboratories, Oak Ridge, Tennessee, 164 pp.

    Google Scholar 

  • Oort, A., 1983, Global atmospheric circulation statistics 1968–1973, National Oceanic and Atmospheric Administration, Rockville.

    Google Scholar 

  • Pisano, E., 1983, The Magellanic tundra complex, in A. J. P., Gore (ed.), Ecosystems of the World (4B), Mires: Swamp, Bog, Fen and Moor, Vol. 2, Elsevier, Amsterdam, pp. 295–330.

    Google Scholar 

  • Rasmussen, R. A. and Khalil, M. A. K., 1984, Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends and interhemispheric gradients, J. Geophys. Res.89, 11599–11605.

    Article  Google Scholar 

  • Rudd, J. W. M. and Hamilton, R. D., 1978, Methane cycling in an autrophic shield lake and its effect on whole lake metabolism, Limnol. Oceanogr.23, 337–348.

    Article  Google Scholar 

  • Ruuhijärvi, R., 1983, The Finnish mire types and their regional distribution, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 295–330.

    Google Scholar 

  • Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., and Coley, P., 1986, River dynamics and the diversity of Amazon lowland forest, Nature322, 254–258.

    Article  Google Scholar 

  • Sebacher, D. I., Harriss, R. C., Bartlett, K. B., Sebacher, S. M., and Grice, S. S., 1986, Atmospheric methane sources: Alaskan tundra bogs, an Alpine fen and a subarctic boreal marsh, Tellus38, 1–10.

    Article  Google Scholar 

  • Seiler, W., 1984, Contribution of biological processes to the global budget of CH4 in the atmosphere, in M. J., Klug and C. A., Reddy (eds.), Current Perspectives in Microbial Ecology, Amer. Soc. Microbiology, Washington, D. C., pp. 468–477.

    Google Scholar 

  • Seiler, W., Holzapfel-Pschorn, A., conrad, R., and Scharffe, D., 1984, Methane emission from rice paddies, J. Atmos. Chem.1, 241–268.

    Article  Google Scholar 

  • Shaw, E. and Fredine, P., 1956, Wetlands of the United States, U.S. Fish & Wildlife Service Circular 39.

  • Sjörs, H., 1983, Mires of Sweden, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog. Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 69–94.

    Google Scholar 

  • Speece, R. E. and Kem, J. A., 1970, The effect of short-term temperature variations on methane production, J. Water Pollution Control Federation42, 1990–1997.

    Google Scholar 

  • Svensson, B. H., 1983, Carbon fluxes from acid peat of a subarctic mire with emphasis on methane (dissertation), Institutionen fór Mikrobiologi, Swedish Univ. Agricultural Sci. Rapport 20, Uppsala.

  • Svensson, B. H., 1984, Different temperature optima for methane formation, when enrichment from acid peat are supplemented with acetate or hydrogen, Appl. Environ. Microbiol.48, 389–394.

    Article  Google Scholar 

  • Svensson, B. H. and Rosswall, T., 1984, In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire, Oikos43, 341–350.

    Article  Google Scholar 

  • Swain, F. M., 1973, Marsh gas from the Atlantic coastal plain, United States, in B., Tissot and F., Bremer (eds.), Advances in Organic Geochemistry, Technip, Paris, pp. 673–687.

    Google Scholar 

  • Taylor, J. A., 1983, The Peatlands of Great Britain and Ireland, in A. J. P, Gore (ed.), Ecosystems of the World (4B). Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 1–46.

    Google Scholar 

  • The Great Geographical Atlas, 1982, Mitchell Beazley, London; Istituto Geografico de Agostini, Novara: Rand McNally, Chicago.

  • The World Atlas, 1969, Chief Administration of Geodesy and Cartography under Council of Minister of the U.S.S.R., Moscow, 2nd edn.; B. I. Shurov, Editor in-chief.

  • Thompson, K. and Hamilton, A. C., 1983, Peatlands and swamps of the African continent, in A. J. P., Gore (ed.), Ecosystems of the World (4B), Mires: Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 331–374.

    Google Scholar 

  • Wahlen, M., Tanaka, N., Henry, R., Deck, B., and Zeglen, J., 1989, Carbon-14 in methane sources and in atmospheric methane: The contribution from fossil sources, Science (in press).

  • Walter, H., 1973, Die Vegetation der Erde, Vol. 1, Fischer-Verlag, Stuttgart.

    Google Scholar 

  • Walter, H., 1977, The oligotrophic peatlands of Western Siberia — The largest peinohelobiome in the world, Vegetatio34, 167–178.

    Article  Google Scholar 

  • Whalen, S. C. and Reeburgh, W. S., 1988, Methane flux time-series for tundra environments, Global Biogeochemical Cycles2, 399–409.

    Article  Google Scholar 

  • Whittaker, R. H. and Likens, G. E., 1975, The biosphere and man, in H., Lieth and R. H., Whittaker (eds.), Primary Productivity of the Biosphere (Ecological Studies 14). Springer, New York, Heidelberg, Berlin, pp. 305–328.

    Chapter  Google Scholar 

  • Williams, R. T. and Crawford, R. C., 1984, Methane production in Minnesota peatlands, Appl. Environ. Microbiol.47, 1266–1271.

    Article  Google Scholar 

  • WMO, 1985, Atmospheric Ozone 1985, Global Ozone Research and Monitoring Project No. 16, Vol. 1, WMO, Case Postale No. 5, Ch-1211 Geneva.

  • Wolin, M. J. and Miller, T. L., 1987, Bioconversion of organic carbon to CH4 and CO2, Geomicrobiology J.5, 239–259.

    Article  Google Scholar 

  • World Atlas of Agriculture, 1969, Istituto Geografico de Agostini, Novara.

  • Zeikus, J. G. and Winfrey, M. R., 1976, Temperature limitation of methanogenesis in aquatic sediments, Appl. Environ. Microbiol.31, 99–107.

    Article  Google Scholar 

  • Zoltai, S. C. and Pollett, F. C., 1983, Wetlands in Canada: Their classification, distribution and use, in A. J. P., Gore (ed.), Ecosystems of the World (4B). Mires, Swamp, Bog, Fen, and Moor, Vol. 2, Elsevier, Amsterdam, pp. 245–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aselmann, I., Crutzen, P.J. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8, 307–358 (1989). https://doi.org/10.1007/BF00052709

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052709

Key words

Navigation