Skip to main content
Log in

Coordination of legs during straight walking and turning in Drosophila melanogaster

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Leg coordination of Drosophila melanogaster was studied using frame-by-frame film analysis.

  1. 1.

    For fastest walking alternating tripod coordination is observed which slightly deviates towards tetrapody as a function of step period. During acceleration or deceleration legs may transiently recover in diagonal pairs.

  2. 2.

    Mean step length increases with step frequency.

  3. 3.

    Mean recovery stroke duration increases with step period and plateaus beyond a period of about 110 ms. Middle legs recover significantly faster than others.

  4. 4.

    Ipsilateral footprints are transversally separated.

  5. 5.

    Walking is usually initiated in tripod coordination (frequently in combination with a turn), otherwise in an accelerating sequence which rapidly shifts towards tripod pattern. Flies can stop abruptly or decelerate over about one metachronal wave.

  6. 6.

    Short interruptions in walking are observed. Legs interrupted during swing phase stay lifted and finish recovery thereafter.

  7. 7.

    Slight changes in walking direction are obtained by altering step lengths only. Tight turns are composed of two or three phases with backward, zero and forward translatory components. In fast turning tripod coordination is maintained. Otherwise body sides can decouple widely. In all turns numbers of contralateral metachronal waves were equal.

Results are compared to those for other walking insects and their relevance in screens for locomotor mutants is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bässler U (1983) Neural basis of elementary behavior in stick insects. Studies of brain function, vol X. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster studied on wild-type and the mutant optomotor-blind. J Neurogenet 3:87–109

    Google Scholar 

  • Bell WJ, Schal C (1980) Patterns of turning in courtship orientation of the male German cockroach. Anim Behav 28:86–94

    Google Scholar 

  • Bülthoff H, Götz KG, Herre M (1982) Recurrent inversion of visual orientation in the walking fly, Drosophila melanogaster. J Comp Physiol 148:471–481

    Google Scholar 

  • Burns MD (1973) The control of walking in Orthoptera. J Exp Biol 58:45–58

    Google Scholar 

  • Camhi JM, Levy A (1988) Organization of a complex movement: fixed and variable components of the cockroach escape behavior. J Comp Physiol A 163:317–328

    Google Scholar 

  • Cruse H (1979a) A new model describing the coordination pattern of the legs of a walking stick insect. Biol Cybern 32:107–113

    Google Scholar 

  • Cruse H (1979b) The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiol Entomol 4:121–124

    Google Scholar 

  • Cruse H (1980a) A quantitative model of walking incorporating central and peripheral influences. I. The control of the individual leg. Biol Cybern 37:131–136

    Google Scholar 

  • Cruse H (1980b) A quantitative model of walking incorporating central and peripheral influences. II. The connections between the different legs. Biol Cybern 37:137–144

    Google Scholar 

  • Delcomyn F (1969) Reflexes and locomotion in the American cockroach. Ph.D. Thesis, University of Oregon

  • Delcomyn F (1971) The locomotion of the cockroach Periplaneta americana. J Exp Biol 54:443–452

    Google Scholar 

  • Götz KG (1980) Visual guidance in Drosophila. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Press, New York London, pp 391–407

    Google Scholar 

  • Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruitfly Drosophila. J Comp Physiol 85:235–266

    Google Scholar 

  • Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81:23–52

    Google Scholar 

  • Graham D (1977) Simulation of a model for the coordination of leg movement in free walking insects. Biol Cybern 26:187–198

    Google Scholar 

  • Graham D (1978) Unusual step patterns in the free walking grasshopper Neoconocephalus robustus. I. General features of the step patterns. J Exp Biol 73:147–157

    Google Scholar 

  • Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140

    Google Scholar 

  • Grigliatti T, Hall L, Rosenbluth R, Suzuki DT (1973) Temperature-sensitive mutations in Drosophila melanogaster. XIV. A selection of immobile adults. Molec Gen Genet 120:107–114

    Google Scholar 

  • Hall JC (1982) Genetics of the nervous system in Drosophila. Q Rev Biophys 15:223–479

    Google Scholar 

  • Hall JC, Greenspan RJ (1979) Genetic analysis of Drosophila neurobiology. Ann Rev Genet 13:127–195

    Google Scholar 

  • Harris WA, Stark WS, Walker JA (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J Physiol (Lond) 256:415–439

    Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol 117:127–162

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of microbehavior. Studies of brain function, vol XII. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hughes GM (1952) The co-ordination of insect movements. I. The walking movements of insects. J Exp Biol 29:267–284

    Google Scholar 

  • Jander JP, Wendler G (1978) Zur Steuerung des Kurvenlaufs bei Stabheuschrecken (Carausius morosus). In: Hauske G, Butenandt E (eds) Kybernetik 1977. Oldenbourg, München, pp 388–392

    Google Scholar 

  • Lindsley DL, Grell EH (1968) Genetic variations of Drosophila melanogaster. Carnegie Institution of Washington, Publication No. 627. Washington, D.C.

  • Rubin GM (1988) Drosophila melanogaster as an experimental organism. Science 240:1453–1459

    Google Scholar 

  • Schalet A (1972) Report. Drosophila Inform Serv 49:36

    Google Scholar 

  • Schmidt-Nielson BK, Hall LM (1977) An abnormal walking mutant associated with a translocation. Drosophila Inform Serv 52:71–72

    Google Scholar 

  • Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250

    Google Scholar 

  • Wendler G (1968) Ein Analogmodell der Beinbewegungen eines laufenden Insekts. In: Marko H, Färber G (eds) Kybernetik 1968. Oldenbourg, München, pp 68–74

    Google Scholar 

  • Wendler G (1978) Erzeugung und Kontrolle koordinierter Bewegungen bei Tieren — Beispiele an Insekten. In: Hauske G, Butenandt E (eds) Kybernetik 1977. Oldenbourg, München, pp 11–34

    Google Scholar 

  • Wilson DM (1966) Insect walking. Annu Rev Entomol 11:103–122

    Google Scholar 

  • Zolotov V, Frantsevich L, Falk E-M (1975) Kinematik der phototaktischen Drehung bei der Honigbiene Apis mellifera L. J Comp Physiol 97:339–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strauß, R., Heisenberg, M. Coordination of legs during straight walking and turning in Drosophila melanogaster . J Comp Physiol A 167, 403–412 (1990). https://doi.org/10.1007/BF00192575

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00192575

Key words

Navigation