Skip to main content
Log in

Auditory interneurons in Cyphoderris monstrosa (Orthoptera: Haglidae)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

  1. 1.

    Prothoracic auditory interneurons in the primitive orthopteran Cyphoderris monstrosa (Ensifera: Haglidae) were characterized morphologically and physiologically, using intracellular recording and staining.

  2. 2.

    Auditory interneurons with similar morphologies to several classes of identified cells in crickets were discovered. These cell types corresponded to omega, AN1, DN1, and TN1 cells of Gryllidae. Several novel cell types were also discovered, including a second ascending cell with a distinctive morphology, and several descending and T-fibres.

  3. 3.

    Responses of auditory cells had a similar frequency tuning to whole auditory nerve measurements, with all cell types responding maximally to low frequencies (2–4 kHz). This is in contrast to the carrier frequency of the species acoustic signal (12 kHz). There were differences, however, in the relative sensitivities of different interneuron types at the calling song frequency, with ascending and omega cells being more sensitive at this frequency than descending or T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BF:

best frequency

pps:

pulses per second

References

  • Alexander RD (1967) Acoustical communication in arthropods. Annu Rev Entomol 12:495–526

    Google Scholar 

  • Alexander RD (1968) Arthropods. In: Sebeok TA (ed) Animal communication. Indiana University Press, Bloomington, pp 167–216

    Google Scholar 

  • Ander K (1939) Vergleichend-anatomische und phylogenetische Studien über die Ensifera (Saltatoria). Opusc Entomol Lund Suppl 2

  • Atkins G, Pollack GS (1987a) Response properties of prothoracic interganglionic, sound-activated interneurons in the cricket Teleogryllus oceanicus. J Comp Physiol A 161:681–693

    Google Scholar 

  • Atkins G, Pollack GS (1987b) Correlations between structure, topographic arrangement, and spectral sensitivity of sound-sensitive interneurons in crickets. J Comp Neurol 266:398–412

    Google Scholar 

  • Ball EE, Field LH (1981) Structure of the auditory system of the weta Hemideina crassidens (Blanchard, 1851) (Orthoptera, Ensifera, Gryllacridoidea, Stenopelmatidae) I. Morphology and histology. Cell Tissue Res 217:321–343

    Google Scholar 

  • Ball EE, Hill KG (1978) Functional development of the auditory system of the cricket Teleogryllus commodus. J Comp Physiol 127:131–138

    Google Scholar 

  • Boyan GS, Williams JLD (1982) Auditory neurons in the brain of the cricket Gryllus bimaculatus (De Geer): ascending interneurones. J Insect Physiol 28(6): 493–501

    Google Scholar 

  • Boyd P, Kühne R, Silver S, Lewis B (1984) Two-tone suppression and song coding by ascending neurones in the cricket Gryllus campestris L. J Comp Physiol A 154:423–430

    Google Scholar 

  • Casaday GB, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus: physiological and anatomical properties. J Comp Physiol 121:1–13

    Google Scholar 

  • Dodson GN, Morris GK, Gwynne DT (1983) Mating behavior of the primitive orthopteran genus Cyphoderris (Haglidae). In: Gwynne DT, Morris GK (eds) Orthopteran mating systems: sexual competition in a diverse group of insects. Westview, Boulder Colorado, pp 305–318

    Google Scholar 

  • Eibl E, Huber F (1979) Central projections of tibial sensory fibers within the three thoracic ganglia of crickets (Gryllus campestris L., Gryllus bimaculatus DeGeer). Zoomorphologie 92:1–17

    Google Scholar 

  • Field LH, Hill KG, Ball EE (1980) Physiological and biophysical properties of the auditory system of the New Zealand weta Hemideina crassidens (Blanchard, 1851) (Ensifera: Stenopelmatidae). J Comp Physiol 141:31–37

    Google Scholar 

  • Hennig RM (1988) Ascending auditory interneurons in the cricket Teleogryllus commodus (Walker): comparative physiology and direct connections with afferents. J Comp Physiol A 163:135–143

    Google Scholar 

  • Huber F, Moore TE, Loher W (1989) Cricket behavior and neurobiology. Cornell University Press, Ithaca NY

    Google Scholar 

  • Hutchings M, Lewis B (1984) The role of two-tone suppression in song coding by ventral cord neurones in the cricket Teleogryllus oceanicus (Le Guillou). J Comp Physiol A 154:103–112

    Google Scholar 

  • Kalmring K, Kühne R (1980) The coding of airborne-sound and vibration signals in bimodal ventral-cord neurons of the grasshopper Tettigonia cantans. J Comp Physiol 139:267–275

    Google Scholar 

  • Kleindienst H-U, Koch UT, Wohlers DW (1981) Analysis of the cricket auditory system by acoustic stimulation using a closed sound field. J Comp Physiol 141:283–296

    Google Scholar 

  • Kühne R, Silver S, Lewis B (1984) Processing of vibratory and acoustic signals by ventral cord neurones in the cricket Gryllus campestris. J Insect Physiol 30:575–585

    Google Scholar 

  • Lakes R, Schikorski T (1990) The neuroanatomy of the Tettigoniidae. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House Press, Bathurst NSW, pp 166–190

    Google Scholar 

  • Mason AC (1991) Hearing in a primitive ensiferan: the auditory system of Cyphoderris monstrosa (Orthoptera: Haglidae). J Comp Physiol A 168:351–363

    Google Scholar 

  • Meier T, Reichert H (1990) Embryonic development and evolutionary origin of the orthopteran auditory organs. J Neurobiol 21:592–610

    Google Scholar 

  • Michelsen A, Larsen ON (1985) Hearing and sound. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry & pharmacology Vol 6: nervous system — sensory. Pergamon Press, New York, pp 495–556

    Google Scholar 

  • Miller LA, Olesen J (1979) Avoidance behaviour in green lacewings. I. Behaviour of free flying green lacewings to hunting bats and ultrasound. J Comp Physiol 131:113–120

    Google Scholar 

  • Moiseff A, Hoy R (1983) Sensitivity to ultrasound in an identified auditory interneuron in the cricket: a possible neural link to phonotactic behavior. J Comp Physiol 152:155–167

    Google Scholar 

  • Moiseff A, Pollack GS, Hoy RR (1978) Steering responses of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA 75:4052–4056

    Google Scholar 

  • Morris GK, Gwynne DT (1978) Geographical distribution and biological observations of Cyphoderris (Orthoptera: Haglidae) with a description of a new species. Psyche 85(2–3) 147–167

    Google Scholar 

  • Nolen TG, Hoy RR (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992–994

    Google Scholar 

  • Nolen TG, Hoy RR (1986a) Phonotaxis in flying crickets I. Attraction to the calling song and avoidance of bat-like ultra-sound are discrete behaviors. J Comp Physiol A 159:423–439

    Google Scholar 

  • Nolen TG, Hoy RR (1986b) Phonotaxis in flying crickets II. Physiological mechanisms of two-tone suppression of the high-frequency avoidance steering by the calling song. J Comp Physiol A 159:441–456

    Google Scholar 

  • Nolen TG, Hoy RR (1987) Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behaviour. J Neurosci 7:2081–2096

    Google Scholar 

  • Otte D (1977) Communication in Orthoptera. In: Sebeok TA (ed) How animals communicate. Indiana University Press, Bloomington London, pp

    Google Scholar 

  • Pollack GS, Hoy RR (1981) Phonotaxis in flying crickets: neural correlates. J Insect Physiol 27:41–45

    Google Scholar 

  • Popov AV, Markovich AM (1982) Auditory interneurones in the prothoracic ganglion of the cricket Gryllus bimaculatus II. A high-frequency ascending neurone (HF1AN). J Comp Physiol 146:351–359

    Google Scholar 

  • Popov AV, Markovich AM, Andjan AS (1978) Auditory interneurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus deGeer I. The large segmental auditory neuron (LSAN). J Comp Physiol 126:183–192

    Google Scholar 

  • Ragge DR (1955) The wing-venation of the Orthoptera Saltatoria with notes on dictyopteran wing-venation. British Museum Natural History, London, 159 pp

    Google Scholar 

  • Richards AM (1973) A comparative study of the biology of the giant wetas Deinacrida heteracantha and D. fallai (Orthoptera: Henicidae) from New Zealand. J Zool Lond 169:195–236

    Google Scholar 

  • Roeder KD (1962) The behaviour of free flying moths in the presence of ultrasonic pulses. Anim Behav 10:300–304

    Google Scholar 

  • Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215

    Google Scholar 

  • Römer H, Bailey W, Dadour I (1989) Insect hearing in the field III. Masking by noise. J Comp Physiol A 164:609–620

    Google Scholar 

  • Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185

    Google Scholar 

  • Schildberger K, Hörner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163:621–631

    Google Scholar 

  • Schildberger K, Milde JJ, Hörner M (1988) The function of auditory neurons in cricket phonotaxis II. Modulation of auditory responses during locomotion. J Comp Physiol A 163:633–640

    Google Scholar 

  • Selverston AI, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5(5):1283–1292

    Google Scholar 

  • Sharov AG (1968) Phytogeny of the Orthopteroidea. Trans Paleontol Inst Acad Sci USSR 118:1–216 (English ed, Prog Sci Transl 1971, pp 1–251)

    Google Scholar 

  • Shaw SR (1990) A missing link in insect audition. Soc Neurosci Abstr 16:400

    Google Scholar 

  • Spooner JD (1973) Sound production in Cyphoderris monstrosa (Orthoptera: Prophalangopsidae). Ann Entomol Soc Am 72:13–25

    Google Scholar 

  • Storozhenko S (1980) Haglidae (Orthoptera) — a new family for the USSR fauna. (In Russian) Entomologicheskoe Obozrenie 59:114–117

    Google Scholar 

  • Stout JF, Atkins G, Burghardt F (1985) The characterization and possible importance for phonotaxis of “L”-shaped ascending acoustic interneurons in the cricket Acheta domesticus. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Paul Parey, Hamburg, pp 89–100

    Google Scholar 

  • Wiese K (1981) Influence of vibration of cricket hearing: interaction of low frequency vibration and acoustic stimuli in the omega neuron. J Comp Physiol 143:135–142

    Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol 146:161–173

    Google Scholar 

  • Zeuner FE (1939) Fossil Orthoptera Ensifera. British Museum Natural History, London, 321 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, A.C., Schildberger, K. Auditory interneurons in Cyphoderris monstrosa (Orthoptera: Haglidae). J Comp Physiol A 171, 749–757 (1993). https://doi.org/10.1007/BF00213071

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00213071

Key words

Navigation