Skip to main content
Log in

Neuronal architecture of the central complex in Drosophila melanogaster

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

On the basis of 1200 Golgi-impregnated brains the structure of the central complex of Drosophila melanogaster was analyzed at the cellular level. The four substructures of the central complex — the ellipsoid body, the fanshaped body, the noduli, and the protocerebral bridge — are composed of (a) columnar small-field elements linking different substructures or regions in the same substructure and (b) tangential large-field neurons forming strata perpendicular to the columns. At least some small-field neurons belong to isomorphic sets, which follow various regular projection patterns. Assuming that the blebs of a neuron are presynaptic and the spines are postsynaptic, the Golgi preparations indicate that small-field neurons projecting to the ventral bodies (accessory area) are the main output from the central complex and that its main input is through the large-field neurons. These in turn are presumed to receive input in various neuropils of the brain including the ventral bodies. Transmitters can be attributed immunocytochemically to some neuron types. For example, GABA is confined to the R1–R4 neurons of the ellipsoid body, whereas these cells are devoid of choline acetyltransferase-like immunore-activity. It is proposed that the central complex is an elaboration of the interhemispheric commissure serving the fast exchange of data between the two brain hemispheres in the control of behavioral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bausenwein B (1988) Neuronale Aktivitätsmarkierung während visueller Flugsteuerung von Drosophila melanogaster. Dissertation Würzburg

  • Blest AD (1961) Some modifications of Holme's silver method for insect central nervous system. Q J Microsc Sci 102:413–417

    Google Scholar 

  • Buchner E, Buchner S (1984) Neuroanatomical mapping of visually induced nervous activity in insects by 3H-deoxyglucose. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press New York, pp 623–634

    Google Scholar 

  • Buchner E, Buchner S, Crawford G, Mason WT, Salvaterra PM, Sattelle DB (1986) Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster. Cell Tissue Res 246:57–62

    Google Scholar 

  • Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizmann CW, Hemm S, Hofbauer A, Oertel WH (1988) Cell-specific immunoprobes for the brain of normal and mutant Drosophila melanogaster. Cell Tissue Res 253:357–370

    Google Scholar 

  • Colonnier M (1964) The tangential organization of the visual cortex. J Anat 98:327–344

    Google Scholar 

  • Drescher W (1960) Regenerationsversuche am Gehirn von Periplaneta americana unter Berücksichtigung von Verhaltensänderungen und Neurosekretion. Z Morphol Ökol Tiere 48:576–649

    Google Scholar 

  • Duve H, Thorpe A, Strausfeld NJ (1983) Cobalt-immunocytochemical identification of peptidergic neurons in Calliphora innervating central and peripheral targets. J Neurocytol 12:847–861

    Google Scholar 

  • Fischbach KF, Götz C (1981) Das Experiment: ein Blick ins Fliegenhirn: Golgi-gefärbte Nervenzellen bei Drosophila. Biu Z 11:183–187

    Google Scholar 

  • Fischbach KF, Heisenberg M (1981) Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor response. Proc Natl Acad Sci USA 78:1105–1109

    Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn von Formica. Z Morphol Ökol Tiere 59:143–210

    Google Scholar 

  • Goodman CS, Williams JLD (1976) Anatomy of the ocellar interneurons of acridid grasshoppers. II. The small interneurons. Cell Tissue Res 175:203–207

    Google Scholar 

  • Gorczyca M, Hall J (1987) Immunocytochemical localization of choline acetyltransferase during development and in mutant Drosophila melanogaster. Soc Neurosci Abstr 12:245

    Google Scholar 

  • Hanesch U (1987) Der Zentralkomplex von Drosophila melanogaster. Dissertation Würzburg

  • Hanström B (1928) Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hauusen K (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh Dtsch Zool Ges 1981:49–70

    Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) optomotor-blindH31 — a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296

    Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    Google Scholar 

  • Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster. Z Wiss Zool 139:559–663

    Google Scholar 

  • Hofbauer A (1987) Monoclonal antibodies reveal anatomical details in the Drosophila brain. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme, Stuttgart New York

    Google Scholar 

  • Homberg U (1985) Interneurons of the central complex in the bee brain (Apis mellifica L.). J Insect Physiol 31:251–264

    Google Scholar 

  • Homberg U (1987) Structure and functions of the central complex in insects. In: Gupta AP (ed) Arthropod brain. Wiley, New York Chichester Brisbane Toronto Singapore

    Google Scholar 

  • Honegger HW, Schürmann FWE (1975) Cobalt sulphide staining of optic fibres in the brain of the cricket, Gryllus compestris. Cell Tissue Res 159:213–225

    Google Scholar 

  • Horridge GA (1965) Arthropod A: General anatomy. In: Bullock TH, Horridge GA (eds) Structure and function in the nervous system of invertebrates vol 2. Freeman, San Francisco

    Google Scholar 

  • Huber F (1955) Sitz und Bedeutung nervöser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris. Z Tierpsychol 12:12–18

    Google Scholar 

  • Huber F (1960) Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Fortbewegung und Lauterzeugung der Grillen. Z Vergl Physiol 44:60–132

    Google Scholar 

  • Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z Vergl Physiol 74:227–271

    Google Scholar 

  • Power ME (1943) The brain of Drosophila melanogaster J Morphol 72:517–559

    Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300

    Google Scholar 

  • Schildberger K (1982) Untersuchungen zur Struktur und Funktion von Interneuronen im Pilzkörperbereich des Gehirns der Hausgrille Acheta domesticus. Dissertation Göttingen

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res 230:573–586

    Google Scholar 

  • Schürmann FW (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432

    Google Scholar 

  • Shaw SR (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects especially Diptera. In: Roberts A, Bush BMH (eds) Neurones without impulses. Cambridge University Press, Cambridge

    Google Scholar 

  • Strausfeld N (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Viallanes H (1886) La structure du cerveau des hymenopteres. Bull Soc Philom Paris 10:82–83

    Google Scholar 

  • Williams JLD (1972) Some observations on the neuronal organization of the supraoesophageal ganglion in Schistocerca gregaria with particular reference to the central complex. Dissertation Cardiff

  • Williams JLD (1975) Anatomical studies of the insect nervous system: A ground-plan of the midbrain and an introduction of the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanesch, U., Fischbach, K.F. & Heisenberg, M. Neuronal architecture of the central complex in Drosophila melanogaster . Cell Tissue Res. 257, 343–366 (1989). https://doi.org/10.1007/BF00261838

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00261838

Key words

Navigation