Skip to main content
Log in

The relationship between the concepts of genetic diversity and differentiation

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Diversity as a measure of individual variation within a population is widely agreed to reflect the number of different types in the population, taking into account their frequencies. In contrast, differentiation measures variation between two or more populations, demes or subpopulations. As such, it is based on the relative frequencies of types within these subpopulations and, ideally, measures the average distance of subpopulations from their respective lumped remainders. This concept of subpopulation differentiation can be applied consistently to a single population by regarding each individual as a deme (subpopulation) of its own, and it results in a measure of population differentiation δ T which depends on the relative frequencies of the types and the population size. δ T corresponds to several indices of variation frequently applied in population genetics and ecology, and it verifies these indices as measures of differentiation rather than diversity. For any particular frequency distribution of types, the diversity ν is then shown to be the size of a hypothetical population in which each type is represented exactly once, i. e. for which δ T =1. Hence, the diversity of a population is its differentiation effective number of types. This uniquely specifies the link between the two concepts. Moreover, ν again corresponds to known measures of diversity applied in population genetics and ecology. While population differentiation can always be estimated from samples, the diversity of a population, particularly if it is large, may not be. In such cases, it is recommended that population differentiation is estimated and the corresponding sample diversity merely computed. Finally, a solution to the problem of measuring multi-locus diversities is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chambers SM, Bayless JW (1983) Systematics, conservation, and the measurement of genetic diversity. In: Schonewald-Cox CM, Chambers ST, MacBride B, Thomas L (eds) Genetics and conservation. Benjamin/Cummings, London Amsterdam; Don Mills, Ontario Sydney Tokyo, pp 349–363

    Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York Evanston London

    Google Scholar 

  • Gregorius H-R (1978) The concept of genetic diversity and its formal relationship to heterozygosity and genetic distance. Math Biosci 41:253–271

    Google Scholar 

  • Gregorius H-R, Roberds JH (1986) Measurement of genetical differentiation among subpopulations. Theor Appl Genet 71:826–834

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Google Scholar 

  • Pielou EC (1969) An Introduction to Mathematical Ecology. Wiley & Sons, New York London Sydney Toronto

    Google Scholar 

  • Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43

    Google Scholar 

  • Routledge RD (1979) Diversity indices: which ones are admissible? J Theor Biol 76:503–515

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 2. University of Chicago Press, Chicago

    Google Scholar 

  • Ziehe M (1982) Quantifizierung genetischer Variation. Forum Genetik-Wald-Forstwirtschaft. Bericht über die 2. Arbeitstagung, Göttingen, S 41–49

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. M. A. Tigerstedt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorius, H.R. The relationship between the concepts of genetic diversity and differentiation. Theoret. Appl. Genetics 74, 397–401 (1987). https://doi.org/10.1007/BF00274724

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00274724

Key words

Navigation