Skip to main content
Log in

The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a theoretical model which is used to explain the intersegmental coordination of the neural networks responsible for generating locomotion in the isolated spinal cord of lamprey.

A simplified mathematical model of a limit cycle oscillator is presented which consists of only a single dependent variable, the phase θ(t). By coupling N such oscillators together we are able to generate stable phase locked motions which correspond to traveling waves in the spinal cord, thus simulating “fictive swimming”. We are also able to generate irregular “drifting” motions which are compared to the experimental data obtained from cords with selective surgical lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkenblitt, M. B., Deliagina, T. H., Feldman, A. G., Gelfand, I. M., Orlovsky, G. N.: Generation of scratching. I. Activity of spinal interneurons during scratching. J. Neurophysiol. 41, 1040–1057 (1978)

    Google Scholar 

  • Carpenter, G. A.: Bursting phenomena in excitable membranes. SIAM J. Appl. Math. 36(2), 334–372 (1979)

    Google Scholar 

  • Chillingworth, D. R. J.: Differential topology with a view to applications. Pitman, 1976

  • Cohen, A. H., Buchanan, J. T.: Activity of identified spinal neurons in lamprey during “fictive swimming”, Abstract No. 129.2, Soc. Neurosci., 1980

  • Cohen, A. H., Wallén, P.: The neuronal correlate of locomotion in fish. “Fictive swimming” induced in an in vitro preparation of the lamprey spinal cord. Exp. Brain Res. 41, 11–18 (1980)

    Google Scholar 

  • Cohen, D. S., Neu, J. C.: Interacting oscillatory chemical reactors. Bifurcation theory and applications in the scientific disciplines. Gurel, O., Rössler, D. E. (eds.). Annals N. Y. Acad. Sci. 316, 332–337 (1979)

  • Dismukes, R. K.: New concepts of molecular communication among neurons. Beh. Brain Sci. 2, 409–448 (1979)

    Google Scholar 

  • Ermentrout, G. B.: nm phase locking of weakly coupled oscillators. J. Math. Biol. 12, 327–342 (1981)

    Google Scholar 

  • Friesen, W. O., Stent, G. S.: Generation of a locomotory rhythm by a neural network with recurrent cyclic inhibition. Biol. Cyber. 28, 27–40 (1977)

    Google Scholar 

  • Getting, P. A., Lennard, P. R., Hume, R. I.: Central pattern generator mediating swimming in Tritonia. I. Identification and synaptic interactions. J. Neurophysiol. 44, 151–164 (1980)

    Google Scholar 

  • Glass, L., Young, R. E.: Structure and dynamics of neural network oscillators. Brain Res. 179, 207–218 (1979)

    Google Scholar 

  • Grasman, J., Jansen, M. J. W.: Mutually synchronized relaxation oscillators as prototypes of oscillating systems in biology. J. Math. Biol. 7, 171–197 (1979)

    Google Scholar 

  • Grillner, S.: On the generation of locomotion in the spinal dogfish. Exp. Brain Res. 20, 459–470 (1975)

    Google Scholar 

  • Grillner, S.: Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiol. Rev. 55, 247–304 (1975)

    Google Scholar 

  • Grillner, S., Kashin, S.: On the generation and performance of swimming in fish. In: Neural control of locomotion. (Herman, R., Grillner, S., Stein, P., Stuart, D., eds). Vol. 18, pp. 181–202. New York: Plenum Press 1976

    Google Scholar 

  • Grillner, S., Zangger, P.: How detailed is the central pattern generator for locomotion? Brain Res. 88, 367–371 (1975)

    Google Scholar 

  • Holmes, P. J.: Phase locking and chaos in coupled limit cycle oscillators. Proc. Symp. on Recent Advances in Structural Dynamics, Southampton, England, 1980

  • Keener, J. P., Hoppensteadt, F. C., Rinzel, J.: Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM J. Appl. Math. (in press)

  • Kristan, W. B.: Neural control of movement. Group report. In: Function and formation of neural systems (Stent, G. S., ed.), pp. 329–354. Berlin: Dahlem Konferenz, 1977

    Google Scholar 

  • Linkens, D. A.: Analytical solution of large numbers of mutually coupled nearly sinusoidal oscillators. IEEE Trans. Circuits and Systems, CAS-21(2), 294–300 (1974)

    Google Scholar 

  • Linkens, D. A.: Stability of entrainment conditions for a particular form of mutually coupled van der Pol oscillators. IEEE Trans. Circuits and Systems, CAS-23(2), 113–121 (1976)

    Google Scholar 

  • Neu, J. C.: Coupled chemical oscillators. SIAM J. Appl. Math. 37(2), 307–315 (1979)

    Google Scholar 

  • Neu, J. C.: The method of near-identity transformations and its applications. SIAM J. Appl. Math. 38(2), 189–208 (1980)

    Google Scholar 

  • Neu, J. C.: Large populations of coupled chemical oscillators. SIAM J. Appl. Math. 38(2), 305–316 (1980)

    Google Scholar 

  • Pavlidis, T.: Biological oscillators: Their mathematical analysis. Academic Press, 1973

  • Pavlidis, T., Pinsker, H. M.: Oscillator theory and neurophysiology. Fed. Proc. 36, 2033–2035 (1977)

    Google Scholar 

  • Pinsker, H. M., Bell, J.: Phase plane description of endogenous neuronal oscillators in Aplysia. Biol. Cyber. (in press)

  • Poon, M. L. T.: Induction of swimming in lamprey by L-DOPA and amino acids. J. Comp. Physiol. 136, 337–344 (1980)

    Google Scholar 

  • Poon, M., Friesen, W. D., Stent, G. S.: Neural control of swimming in the medicinal leech. V. Connections between the oscillatory interneurons and the motor neurons. J. Exp. Biol. 75, 45–63 (1978)

    Google Scholar 

  • Rand, R. H., Holmes, P. J.: Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. Int. J. Nonlinear Mechanics 15, 387–399 (1980)

    Google Scholar 

  • Rovainen, C. M.: Neurobiology of lampreys. Physiol. Rev. 59, 1007–1077 (1979)

    Google Scholar 

  • Russell, D. F., Wallén, P.: On the pattern generator for fictive swimming in the lamprey, Icthyomyzon unicuspis. Acta Physiol. Scand. (abst.) (1979)

  • Selverston, A. I.: Are central pattern generators understandable? Beh. Brain Sci. 3, 535–571 (1980)

    Google Scholar 

  • Selverston, A. I., Russell, D. F., Miller, J. P., King, D. G.: The stomatogastric nervous system; structure and function of a small neural network. Prog. Neurobiol. 6, 1–75 (1976)

    Google Scholar 

  • Stein, P. S. G.: Mechanisms of interlimb phase control. In: Neural control of locomotion (Herman, R., Grillner, S., Stein, P., Stuart, D., eds.). Vol. 18, pp. 465–487. New York: Plenum Press 1976

    Google Scholar 

  • Tang, D., Selzer, M. E.: Projections of lamprey spinal neurons determined by the retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol. 188, 629–646 (1979)

    Google Scholar 

  • Vidal, C., Viala, D., Buser, P.: Central locomotor programming in the rabbit. Brain Res. 168, 57–73 (1979)

    Google Scholar 

  • Wilson, D. M.: The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–479 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A.H., Holmes, P.J. & Rand, R.H. The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematical model. J. Math. Biology 13, 345–369 (1982). https://doi.org/10.1007/BF00276069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276069

Key words

Navigation