Skip to main content
Log in

The chromosomes and DNA of Allium cepa

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Giemsa C-banded idiograms that allow the identification of all chromosomes have been prepared for Allium cepa, Ornithogalum virens, and Secale cereale. An analysis of A. cepa DNA has determined that: (1) It has the lowest GC content so far reported for an angiosperm (∼32%). (2) It appears to have no satellite DNA detectable by CsCl or Cs2SO4-Ag+ density gradient centrifugation. (3) Aside from fold back DNA and unreactable fragments, a C0t curve indicates that most of the DNA can be adequately described as two major middle repetitive components (Fractions I and II) and a single copy component (Fraction III). And (4) most of the repeated DNA sequences are involved in a “short period” interspersion pattern with single copy and other repetitive sequences. In situ hybridization of tritiated cRNAs to fold back, long repeated, and Fraction I DNA from A. cepa to squash preparations of chromosomes and nuclei from A. cepa, O. virens, and S. cereale root tips indicates: (1) Sequences complementary to fold back DNA are scattered throughout the genome of A. cepa except for telomeric heterochromatin and nucleolus organizers while they are not detectable in the genomes of O. virens or S. cereale. (2) Although long repeated sequences are scattered throughout the genome of A. cepa, they are concentrated to some extent in telomeric heterochromatin and nucleolus organizers (NOs). Sequences complementary to long repeats of A. cepa occur primarily in chromosome three of O. virens while these sequences are more common in the genome of more distantly related S. cereale. (3) Fraction I DNA is scattered throughout the genome of A. cepa while it is hardly detectable in the genomes of O. virens and S. cereale. These results are discussed in regard to the evolutionary conservation and function of repeated DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachmann, K., Price, H.: Repetitive DNA in Cichorieae (Compositae). Chromosoma (Berl.) 61, 267–275 (1977)

    Google Scholar 

  • Bennett, M.: Nuclear DNA content and minimum generation time in herbaceous plants. Proc. roy. Soc. Lond., B, 181, 109–135 (1972)

    Google Scholar 

  • Biswas, S., Sarkar, A.: Deoxyribonucleic acid base composition of some angiosperms and its significance. Phytochemistry 9, 2425–2430 (1970)

    Google Scholar 

  • Britten, R., Graham, D., Eden, F., Painchaud, D., Davidson, E.: Evolutionary divergence and length of repetitive sequences in sea urchin DNA. J. molec. Evol. 9, 1–23 (1976)

    Google Scholar 

  • Britten, R., Graham, D., Neufeld, B.: Analysis of repeating DNA sequences by reassociation. Methods in enzymology 29 E, 363–418 (1974)

    Google Scholar 

  • Britten, R., Kohne, D.: Nucleotide sequence repetition in DNA. Carnegie Inst. Wash. Year Book 65, 78–106 (1966)

    Google Scholar 

  • Britten, R., Kohne, D.: Repeated sequences in DNA. Science 161, 529–540 (1968)

    Google Scholar 

  • Crain, W., Davidson, E., Britten, R.: Contrasting patterns of DNA sequence arrangement in Apis mellifera (honeybee) and Musca domestica (housefly). Chromosoma (Berl.) 59, 1–12 (1976)

    Google Scholar 

  • Davidson, E., Graham, D., Neufield, B., Chamberlin, M., Amenson, C., Hough, B., Britten, R.: Arrangement and characterization of repetitive sequence elements in animal DNAs. Cold. Spr. Harb. Symp. quant. Biol. 38, 295–301 (1974)

    Google Scholar 

  • Davidson, E., Hough, B., Amenson, C., Britten, R.: General interspersion of repetitive with non-repetitive sequence elements in the DNA of Xenopus. J. molec. Biol. 77, 1–23 (1973)

    Google Scholar 

  • Deumling, B., Sinclair, J., Timmis, J., Ingle, J.: Demonstration of satellite DNA components in several plant species with the Ag+-Cs2SO4 gradient technique. Cytobiologie 13, 224–232 (1976)

    Google Scholar 

  • Dott, P., Chuang, C., Saunders, G.: Inverted repetitive sequences in the human genome. Biochemistry 15, 4120–4125 (1976)

    Google Scholar 

  • Doyle, J.: Fossil evidence on early evolution of the monocotyledons. Quart. Rev. Biol. 48, 399–413 (1973)

    Google Scholar 

  • Eden, F., Graham, D., Davidson, E., Britten, R.: Exploration of long and short repetitive sequence relationships in the sea urchin genome. Nucleic Acids Res. 4, 1553–1567 (1977)

    Google Scholar 

  • El-Gadi, A., Elkington, T.: Comparison of the Giemsa C-Band karyotypes and the relationships of Allium cepa, A. fistulosum, and A. galanthum. Chromosoma (Berl.) 51, 19–23 (1975)

    Google Scholar 

  • Elgin, S., Weintraub, H.: Chromosomal proteins and chromatin structure. Ann. Rev. Biochem. 44, 725–774 (1975)

    Google Scholar 

  • Fiskesjo, C.: Two types of constitutive heterochromatin made visible in Allium by a rapid C-banding method. Hereditas (Lund) 78, 153–156 (1974)

    Google Scholar 

  • Flavell, R., Bennett, M., Smith, J., Smith, D.: Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem. Genet. 12, 257–269 (1974)

    Google Scholar 

  • Flavell, R., Rimpau, J., Smith, D.: Repeated sequence DNA relationships in four cereal genomes. Chromosoma (Berl.) 63, 205–222 (1977)

    Google Scholar 

  • Flavell, R., Smith, D.: Nucleotide sequence organisation in the wheat genome. Heredity 37, 231–252 (1976)

    Google Scholar 

  • Galau, G., Chamberlin, M., Hough, B., Britten, R., Davidson, E.: In: Molecular studies of biological evolution (F. Ayala, ed.), p. 200. Sunderland, Mass.: Sinauer Press 1976

    Google Scholar 

  • Gall, J., Pardue, M.: Nucleic acid hybridization in cytological preparations. Methods in enzymology 21 D, 470–480 (1971)

    Google Scholar 

  • Ginelli, E., Di Lernia, R., Corneo, G.: The organization of DNA sequences in the mouse genome. Chromosoma (Berl.) 61, 215–226 (1977)

    Google Scholar 

  • Godin, D., Stack, S.: Homologous and non-homologous chromosome associations by interchromosomal chromatin connectives in Ornithogalum virens. Chromosoma (Berl.) 57, 309–318 (1976)

    Google Scholar 

  • Hadlaczky, G., Koczka, K.: C-banding karyotype of rye from hexaploid triticale. Cereal Res. Commun. 2, 193–200 (1974)

    Google Scholar 

  • Henderson, A., Warburton, D., Atwood, K.: Location of ribosomal DNA in the human chromosome complement. Proc. nat. Acad. Sci. (Wash.) 69, 3394–3398 (1972)

    Google Scholar 

  • Huguet, T., Jouanin, L.: The heterogeneity of wheat DNA. Biochim. biophys. Acta (Amst.) 262, 431–440 (1972)

    Google Scholar 

  • Ingle, H., Pearson, G., Sinclair, J.: Species distribution and properties of nuclear satellite DNA in higher plants. Nature (Lond.) New Biol. 242, 192–197 (1973)

    Google Scholar 

  • Karavanov, A., Iordanskii, A.: The genome structure of Allium cepa L. and Allium fistulosum L. Mol. Biol. 7, 366–371 (1973)

    Google Scholar 

  • Kiper, M., Herzfeld, F.: DNA sequence organization in the genome of Petroselinum sativum (Umbelliferae). Chromosoma (Berl.) 65, 335–351 (1978)

    Google Scholar 

  • Kirk, J., Rees, H., Evans, G.: Base composition of nuclear DNA within the genus Allium. Heredity 25, 507–512 (1970)

    Google Scholar 

  • Klein, W., Murphy, W., Attardi, G., Britten, R., Davidson, E.: Distribution of repetitive and nonrepetitive sequence transcripts in HeLa mRNA. Proc. nat. Acad. Sci. (Wash.) 71, 1785–1789 (1974)

    Google Scholar 

  • MacGregor, H., Jones, C.: Chromosomes, DNA sequences, and evolution in salamanders of the genus Aneides. Chromosoma (Berl.) 63, 1–9 (1977)

    Google Scholar 

  • Mandel, M., Marmur, J.: Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods in enzymology 12B, 195–206 (1968)

    Google Scholar 

  • Mandel, M., Schildkraut, C., Marmur, J.: Use of CsCl density gradient analysis for determining the guanine plus cytosine content of DNA. Methods in enzymology 12B, 184–195 (1968)

    Google Scholar 

  • Maniatis, T., Jeffrey, A., Kleid, D.: Nucleotide sequence of the rightward operator of phage. Proc. nat. Acad. Sci. (Wash.) 72, 1184–1188 (1975)

    Google Scholar 

  • Marmur, J.: A procedure for isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961)

    Google Scholar 

  • Melli, M., Whitfield, C., Rao, K., Richardson, M., Bishop, J.: DNA-RNA hybridization in vast DNA excess. Nature (Lond.) New Biol. 231, 8–12 (1971)

    Google Scholar 

  • Mizuno, S., Andrews, C., MacGregor, H.: Interspecific “common” repetitive sequences in salamanders of the Genus Plethodon. Chromosoma (Berl.) 58, 1–31 (1976)

    Google Scholar 

  • Noll, H.: Polysomes: Analysis of structure and function. In: Techniques in protein biosynthesis (P. Campbell and J. Sargent, eds.), p. 107–179. New York: Academic Press 1969

    Google Scholar 

  • Ohno, S.: Ancient linkage groups and frozen accidents. Nature (Lond.) 244, 259–262 (1973)

    Google Scholar 

  • Pardue, M., Gall, J.: Nucleic acid hybridization to the DNA of cytological preparations. In: Methods in enzymology 10, 1–16 (1975)

    Google Scholar 

  • Pearson, W., Davidson, E., Britten, R.: A program for least squares analysis of reassociation and hybridization data. Nucleic Acids Res. 4, 1727–1737 (1977)

    Google Scholar 

  • Ranjekar, P., Lafountaine, J., Pallotta, D.: Characterization of repetitive DNA in rye (Secale cereale). Chromosoma (Berl.) 48, 427–440 (1974)

    Google Scholar 

  • Ranjekar, P., Pallotta, D., Lafountaine, J.: Analysis of the genome of plants II. Characterization of repetitive DNA in barley (Hordeum vulgare) and wheat (Triticum aestivum). Biochim. biophys. Acta (Amst.) 425, 30–40 (1976)

    Google Scholar 

  • Robertson, H., Dickson, E., Jelinek, W.: Determination of nucleotide sequences from doublestranded regions of HeLa cells nuclear RNA. J. molec. Biol. 111, 571–589 (1977)

    Google Scholar 

  • Ryskov, A., Saunders, G., Farashyan, V., Georgiev, G.: Double helical regions in nuclear precursor of mRNA (pre-mRNA). Biochim. biophys. Acta (Amst.) 312, 152–164 (1973)

    Google Scholar 

  • Sinclair, J., Brown, D.: Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10, 2761–2769 (1971)

    Google Scholar 

  • Singh, L.: Purdom, I., Jones, K.: Effect of different denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridisation. Chromosoma (Berl.) 60, 377–389 (1977)

    Google Scholar 

  • Smith, D., Flavell, R.: Nucleotide sequence organization in the rye genome. Biochim. biophys. Acta (Amst.) 474, 82–97 (1977)

    Google Scholar 

  • Stack, S.: Differential Giemsa staining of kinetochores and nucleolus organizer heterochromatin in mitotic chromosomes of higher plants. Chromosoma (Berl.) 47, 361–378 (1974)

    Google Scholar 

  • Studier, F.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965)

    Google Scholar 

  • Vosa, C.: Heterochromatic patterns in Allium. I. The relationship between the species of the cepa group and its allies. Heredity 36, 383–392 (1976)

    Google Scholar 

  • Walbot, V., Dure, L.: Developmental biochemistry of cotton seed embryogenesis and germination. VII. Characterization of the cotton genome. J. molec. Biol. 10, 503–536 (1976)

    Google Scholar 

  • Wilson, D., Thomas, C.: Palindromes in chromosomes. J. molec. Biol. 84, 115–144 (1974)

    Google Scholar 

  • Zimmerman, J., Goldberg, R.: DNA sequence organization in the genome of Nicotiana tabacum. Chromosoma (Berl.) 59, 227–252 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stack, S.M., Comings, D.E. The chromosomes and DNA of Allium cepa . Chromosoma 70, 161–181 (1979). https://doi.org/10.1007/BF00288404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288404

Keywords

Navigation