Skip to main content
Log in

Spatial remapping in the primate visual system

  • Published:
Kybernetik Aims and scope Submit manuscript

Summary

The lateral geniculate body performs a spatial remapping operation. This remapping may help to preserve the apparent distance of objects under symmetrical eye movements, thereby stabilizing the appearance of visual space. In addition, a related, and perhaps more basic function of the geniculate remapping may be to increase the efficiency of the neural matrix which encodes depth information. For distant fixation, the majority of cells in this cortical matrix would be responsive to crossed disparities, but for near fixation, many of these same cells might be converted into “uncrossed disparity detectors”. Two types of models for the geniculate are presented, together with supporting evidence: (1) a quantitative psychophysical model describing its steady-state properties, and (2) a qualitative neurophysiological model describing the function of the geniculate laminae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aubert, H., u. R. Förster: Untersuchungenüber Raumsinn der Retina. Albrecht v. Graefes Arch. Ophthal. 3, Chap. 2, 1–37 (1857).

    Google Scholar 

  • Bappert, J.: Neue Untersuchungen zum Problem des Verhältnisses von Akkommodation und Konvergenz zur Wahrnehmung der Tiefe. Z. Psychol. 90, 167–203 (1922).

    Google Scholar 

  • Barlow, H., C. Blakemore, and J. D. Pettigrew: Possible neural mechanisms of binocular sterepsis. J. opt. Soc. Amer. 57, 572 (1967) (Abstract).

    Google Scholar 

  • Bishop, P. O.: The neurology of visual direction. Presented at an M. I. T. Psychology Department Colloquium, Cambridge, October 1963.

  • Bizzi, E.: Changes in orthodromic and antidromic response of optic tract during the eye movements of sleep. J. Neurophysiol. 29, 861–870 (1966a).

    Google Scholar 

  • — Discharge patterns of single geniculate neurons during the rapid eye movements of sleep. J. Neurophysiol. 29, 1087–1095 (1966b).

    Google Scholar 

  • Blank, A. A.: The Luneburg theory of binocular visual space. J. opt. Soc. Amer. 43, 717 (1953).

    Google Scholar 

  • Chacko, L. W.: A preliminary study of the distribution of cell size in the lateral geniculate body. J. Anat. (Lond.) 83, 254–266 (1949).

    Google Scholar 

  • Epstein, W., J. Park, and A. Casey: The current status of the size-distance hypothesis. Psychol. Bull. 58, 491–514 (1961).

    Google Scholar 

  • Evarts, E. V.: Methods for recording activity of individual neurons in moving animals. Meth. med. Res. 11, 241–250 (1966).

    Google Scholar 

  • Foley, J. M.: Binocular disparity and perceived relative distance: An examination of two hypotheses. Vision Res. 7, 655–670 (1967).

    Google Scholar 

  • Freeman, E.: Anomalies of visual acuity in relation to stimulus distance. J. opt. Soc. Amer. 22, 285–292 (1932a).

    Google Scholar 

  • — Accommodation, pupillary width, and stimulus distance. J. opt. Soc. Amer. 22, 729–734 (1932b).

    Google Scholar 

  • Graham, G. H.: Vision and visual perception. New York: John Wiley & Sons 1965.

    Google Scholar 

  • Held, R.: (Chairman): Symposium on locating and identifying: Two modes of visual processing. Presented at the meeting of the Eastern Psychological Association, Boston, Mass., April 1967. Psychol. Forsch, (in press).

  • Helmholtz, H. v.: Treatise on physiological optics, vol. III (J. P. C. Southall, ed.). NewYork: Dover 1962.

    Google Scholar 

  • Henneman, E., G. Somjen, and D. O. Carpenter: Functional significance of cell size in spinal motor neurons. J. Neurophysiol. 28, 560–580 (1965a).

    Google Scholar 

  • —, G. Somjen, and D. O. Carpenter Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599–620 (1965b).

    Google Scholar 

  • Hering, E.: Spatial sense and movements of the eye. Translated by C. A. Radde. Baltimore: American Academy of Optometry 1942.

    Google Scholar 

  • Hillebrand, F.: Die Stabilität der Raumwerte auf der Netzhaut. Z. Psychol. Physiol. Sinnesorg. 5, 1–60 (1893).

    Google Scholar 

  • — Lehre von den Gesichtsempfindungen. Wien: Springer 1929.

    Google Scholar 

  • Holst, E. v., u. H. Mittelstaedt: Das Reafferenzprinzip. Naturwissenschaften 37, 464–476 (1950).

    Google Scholar 

  • Jacobs, G. H.: Responses of the lateral geniculate nucleus to light increment and decrement and the encoding of brightness. Vision Res. 6, 83–87 (1966).

    Google Scholar 

  • Jones, A. E.: Wavelength and intensity effects on the response of single lateral geniculate nucleus units in the owl monkey. J. Neurophysiol. 29, 125–138 (1966).

    Google Scholar 

  • Kawamura, H., and P. L. Marchiafava: Modulation of transmission of optic nerve impulses in the alert cat. Brain Res. 2, 213–215 (1966).

    Google Scholar 

  • Kuno, M.: Excitability following antidromic activation in spinal motoneurons supplying red muscles. J. Physiol. (Lond.) 149, 374–393 (1959).

    Google Scholar 

  • Le Gros Clark, W. E., and G. G. Penman: The projection of the retina on the lateral geniculate body. Proc. roy. Soc. B 114, 291–313 (1934).

    Google Scholar 

  • Levelt, W. J. M.: On binocular rivalry. Soesterberg Institute for Perception, RVO-TNO, 1965.

  • Linksz, A.: Physiology of the eye, vol. 2. Vision. New York: Grune & Stratton 1952.

    Google Scholar 

  • Luckiesh, M., and F. K. Moss: The dependence of visual acuity upon stimulus distance. J. opt. Soc. Amer. 23, 25–29 (1933).

    Google Scholar 

  • —, and F. K. Moss The variation in visual acuity with fixation distance. J. opt. Soc. Amer. 31, 594–595 (1941).

    Google Scholar 

  • Luneburg, R. K.: Mathematical analysis of binocular vision. Princeton: Princeton Univ. Press 1947.

    Google Scholar 

  • Mackay, D. M.: Towards an information-flow model of human behavior. Brit. J. Psychol. 47, 30–43 (1956).

    Google Scholar 

  • — Interactive processes in visual perception. In: W. A. Rosenblith (ed.), Sensory communication, p. 339–355. Cambridge: M. I. T. Press 1961.

    Google Scholar 

  • McCready jr., D. W.: The size-distance perception and accommodation-convergence micropsia a critique. Vision Res. 5, 189–206 (1965).

    Google Scholar 

  • Miller, T. J., and K. N. Ogle: Stereoscopic localization of afterimages with eyes in asymmetric convergence. Invest. Ophthal. 3, 339–353 (1964).

    Google Scholar 

  • Ogle, K. N.: Perception of distance and size. In: H. Davson (ed.), The eye, vol. 4, Visual optics and the optical space sense, p. 247–270. New York: Academic 1962.

    Google Scholar 

  • — Researches in binocular vision. New York: Hafner 1964.

    Google Scholar 

  • — Some aspects of stereoscopic depth perception. J. opt. Soc. Amer. 57, 1073–1081 (1967).

    Google Scholar 

  • Pitts, W., and W. S. McCul-loch: How we know universals. Bull. Math. Biophysics 9, 127–147 (1947).

    Google Scholar 

  • Polyak, S.: The vertebrate visual system. H. Klüver (ed.). Chicago: Chicago Univ. Press 1957.

    Google Scholar 

  • Rashbass, C., and G. Westheimer: Independence of conjugate and disjunctive eye movements. J. Physiol. (Lond.) 159, 361–364 (1961).

    Google Scholar 

  • Richards, W.: Apparent modifiability of receptive fields during accomodation and convergence and a model for size constancy. Neuropsychologia 5, 63–72 (1967a).

    Google Scholar 

  • — Size scaling and binocular rivalry. J. opt. Soc. Amer. 57, 576 (1967b) (Abstract).

    Google Scholar 

  • Ronchi, V.: Optics the science of vision. New York: The University Press 1957.

    Google Scholar 

  • Schneider, G. S.: Superior colliculus and visual cortex: Contrasting behavioral effects of their ablation in the hamster. Unpublished doctoral diss. M. I. T., 1966.

  • Shipley, T.: Convergence function in binocular visual space. I. Anote on theory. J. opt. Soc. Amer. 47, 795–803 (1957).

    Google Scholar 

  • Sperry, R. W.: Neural basis of the spontaneous optokinetic response produced by inverted vision. J. comp. physiol. Psychol. 43, 482–489 (1950).

    Google Scholar 

  • Teuber, H.-L.: Perception. In: J. Field (ed.), Handbook of physiology, vol. III. Neurophysiology, p. 1595–1668. Baltimore: Williams & Wilkins Press 1960.

    Google Scholar 

  • Zuber, B. L.: Physiological control of eye movements in humans. Unpublished doctoral diss., M. I. T., 1965

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the U.S. Air Force under contract No. AFORSR-F 44620-67-C0085. Supplementary funding was received from NASA and NIMH under grants Ns G 496 and MH 05673 awarded to Prof. H.-L. Teuber, Chairman, Dept. of Psychology, M. I. T., Cambridge, Mass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richards, W. Spatial remapping in the primate visual system. Kybernetik 4, 146–156 (1968). https://doi.org/10.1007/BF00288548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00288548

Keywords

Navigation