Skip to main content
Log in

Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The cbbF genes of the facultative chemoautotroph Alcaligenes eutrophus H16 are part of two highly homologous cbb operons. Both the chromosomal and the megaplasmid pHG1-borne copy of cbbF were cloned and sequenced. Subsequent analyses including comparison with known sequences from other organisms and heterologous expression in Escherichia coli revealed that each of the genes encodes fructose-1,6-bisphosphatase (FBPase). A closely related activity likewise operating in the Calvin carbon reduction cycle, sedoheptulose-1,7-bisphosphatase, was also catalyzed by the two isoenzymes which were purified from autotrophically grown cells of A. eutrophus. Two-dimensional gel electrophoresis allowed the separation of the cbbF gene products. Preliminary physical evidence by Southern hybridization with a heterologous gene probe was obtained for the existence of a third FBPase gene, fbp, on the chromosome of the organism. Its product is probably involved in the heterotrophic carbon metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  1. Abdelal AT, Schlegel HG (1974) Purification and regulatory properties of fructose-1,6-bisphosphatase from Hydrogenomonas eutropha. J Bacteriol 120:304–310

    Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  3. Amachi T, Bowien B (1979) Characterization of two fructose bisphosphatase isoenzymes from the hydrogen bacterium Nocardia opaca 1b. J Gen Microbiol 113:347–356

    Google Scholar 

  4. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1988) Current protocols in molecular biology. New York, N.Y.: Greene Publishing Associates and John Wiley & Sons

    Google Scholar 

  5. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99

    Google Scholar 

  6. Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol 35:405–452

    Google Scholar 

  7. Bowien B, Bednarski R, Kusian B, Windhövel U, Freter A, Schäferjohann J, Yoo J-G (1993) Genetic regulation of CO2 assimilation in chemoautotrophs. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Andover: Intercept, pp 481–491

    Google Scholar 

  8. Bullock WO, Fernandez JM, Short JM (1987) XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with β-galactosidase selection. BioTechniques 5:376–378

    Google Scholar 

  9. Cadet F, Meunier J-C, Ferté N (1987) Isolation and purification of chloroplastic spinach (Spinacia oleracea) sedoheptulose-1,7-bisphosphatase. Biochem J 241:71–74

    Google Scholar 

  10. Falcone DL, Tabita FR (1993) Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum. J Bacteriol 175:5066–5077

    Google Scholar 

  11. Fraenkel DG, Pontremoli S, Horecker BL (1966) The specific fructose diphosphatase of Escherichia coli: properties and partial purification. Arch Biochem Biophys 114:4–12

    Google Scholar 

  12. Genetics Computer Group (1991) Program manual for the GCG package, version 7. Madison, Wis.: Genetics Computer Group

    Google Scholar 

  13. Gerbling K-P, Steup M, Latzko E (1986) Fructose 1,6-bisphosphatase form B from Synechococcus leopoliensis hydrolyzes both fructose and sedoheptulose bisphosphate. Plant Physiol 80:716–720

    Google Scholar 

  14. Gibson JL, Tabita FR (1988) Localization and mapping of CO2 fixation genes within two gene clusters in Rhodobacter sphaeroides. J Bacteriol 170:2153–2158

    Google Scholar 

  15. Gibson JL, Chen J-H, Tower PA, Tabita FR (1990) The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: primary structure and insertional mutagenesis analysis. Biochemistry 29:8085–8093

    Google Scholar 

  16. Gibson JL, Falcone DL, Tabita FR (1991) Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form I CO2 fixation operon of Rhodobacter sphaeroides. J Biol Chem 266:14646–14653

    Google Scholar 

  17. Hahn D, Kück U (1994) Nucleotide sequence of a cDNA encoding the chloroplast sedoheptulose-1,7-bisphosphatase from Chlamydomonas reinhardtii. Plant Physiol 104:1101–1102

    Google Scholar 

  18. Henikoff S (1987) Unidirectional digestion with exonuclease III in DNA-sequencing analysis. Methods Enzymol 155:156–165

    Google Scholar 

  19. Husemann M, Klintworth R, Büttcher V, Salnikow J, Weissenborn C, Bowien B (1988) Chromosomally and plasmid-encoded gene clusters for CO2 fixation (cfx) genes in Alcaligenes eutrophus. Mol Gen Genet 214:112–120

    Google Scholar 

  20. Ke H, Thorpe CM, Seaton BA, Marcus F, Lipscomb WN (1989) Molecular structure of fructose-1,6-bisphosphatase at 2.8-Å resolution. Proc Natl Acad Sci USA 86:1475–1479

    Google Scholar 

  21. Ke H, Zhang Y, Lipscomb WN (1990) Crystal structure of fructose-1,6-bisphosphatase complexed with fructose 6-phosphate, AMP, and magnesium. Proc Natl Acad Sci USA 87:5243–5247

    Google Scholar 

  22. Kortlüke C, Friedrich B (1992) Maturation of membrane-bound hydrogenase of Alcaligenes eutrophus. J Bacteriol 174:6290–6293

    Google Scholar 

  23. Kossmann J, Klintworth R, Bowien B (1989) Sequence analysis of the chromosomal and plasmid genes encoding phosphoribulokinase from Alcaligenes eutrophus. Gene 85:247–252

    Google Scholar 

  24. Kusian B, Yoo J-G, Bednarski R, Bowien B (1992) The Calvin cycle enzyme pentose-5-phosphate 3-epimerase is encoded within the cfx operons of the chemoautotroph Alcaligenes eutrophus. J Bacteriol 174:7337–7344

    Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  26. Marcus F, Harrsch PB (1990) Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase. Arch Biochem Biophys 279:151–157

    Google Scholar 

  27. Marcus F, Edelstein I, Reardon I, Heinrikson RL (1982) Complete amino acid sequence of pig kidney fructose-1,6-bisphosphatase. Proc Natl Acad Sci USA 79:7161–7165

    Google Scholar 

  28. Marcus F, Moberly L, Latshaw SP (1988) Comparative amino acid sequence of fructose-1,6-bisphosphatases: identification of a region unique to the light-regulated chloroplast enzyme. Proc Natl Acad Sci USA 85:5379–5383

    Google Scholar 

  29. Meijer WG (1994) The Calvin cycle enzyme phosphoglycerate kinase of Xanthobacter flavus required for autotrophic CO2 fixation is not encoded by the cbb operon. J Bacteriol 176:6120–6126

    Google Scholar 

  30. Meijer WG, Enequist HG, Terpstra P, Dijkhuizen L (1990) Nucleotide sequences of the genes encoding fructosebisphosphatase and phosphoribulokinase from Xanthobacter flavus H4-14. J Gen Microbiol 136:2225–2230

    Google Scholar 

  31. O'Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021

    Google Scholar 

  32. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  33. Raines CA, Lloyd JC, Willingham NM, Potts S, Dyer TA (1992) cDNA and gene sequences of wheat chloroplast sedoheptulose-1,7-bisphosphatase reveal homology with fructose-1,6-bisphosphatases. Eur J Biochem 205:1053–1059

    Google Scholar 

  34. Rogers DT, Hiller E, Mitstock L, Orr E (1988) Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose. J Biol Chem 263:6051–6057

    Google Scholar 

  35. Sambrook J, Fritsch EF, Maniatis TE (1989) Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press

    Google Scholar 

  36. Sanger F, Nicklen S, Coulsen AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  37. Schäferjohann J, Yoo J-G, Kusian B, Bowien B (1993) The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol 175:7329–7340

    Google Scholar 

  38. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222

    Google Scholar 

  39. Sedivy JM, Daldal F, Fraenkel DG (1984) Fructose bisphosphatase of Escherichia coli: cloning of the structural gene (fbp) and preparation of a chromosomal deletion. J Bacteriol 158:1048–1053

    Google Scholar 

  40. Shine J, Dalgarno L (1975) Determinants of cistron specificity in bacterial ribosomes. Nature 254:34–38

    Google Scholar 

  41. Siebert K, Schobert P, Bowien B (1981) Purification, some catalytic and molecular properties of phosphoribulokinase from Alcaligenes eutrophus. Biochim Biophys Acta 658:35–44

    Google Scholar 

  42. Springate CF, Stachow CS (1972) Fructose 1,6-bisphosphatase from Rhodopseudomonas palustris. I. Purification and properties. Arch Biochem Biophys 152:1–12

    Google Scholar 

  43. Strecker M, Sickinger E, English RS, Shively JM, Bock E (1994) Calvin cycle genes in Nitrobacter vulgaris T3. FEMS Microbiol Lett 120:45–50

    Google Scholar 

  44. Tabita FR, Gibson JL, Falcone DL, Wang X, Li L-A, Read BA, Terlesky KC, Paoli GC (1993) Current studies on the molecular biology and biochemistry of CO2 fixation in phototrophic bacteria. In: Murrell JC, Kelly DP (eds) Microbial growth on C1 compounds. Andover: Inercept, pp 469–479

    Google Scholar 

  45. Tejwani GA (1983) Regulation of fructose-bisphosphatase activity. Adv Enzymol Mol Biol 54:121–194

    Google Scholar 

  46. Windhövel U, Bowien B (1990a) On the operon structure of the cfx gene clusters in Alcaligenes eutrophus. Arch Microbiol 154:85–91

    Google Scholar 

  47. Windhövel U, Bowien B (1990b) Cloning and expression of chromosomally and plasmid-encoded glyceraldehyde-3-phosphate dehydrogenase genes from the chemoautotroph Alcaligenes eutrophus. FEMS Microbiol Lett 66:29–34

    Google Scholar 

  48. Windhövel U, Bowien B (1991) Identification of cfxR, an activator gene of autotrophic CO2 fixation in Alcaligenes eutrophus. Mol Microbiol 5:2695–2705

    Google Scholar 

  49. Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  50. Zimmermann G, Kelly GJ, Latzko E (1976) Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur J Biochem 70:361–367

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, JG., Bowien, B. Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Current Microbiology 31, 55–61 (1995). https://doi.org/10.1007/BF00294635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00294635

Keywords

Navigation