Skip to main content
Log in

Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

HO-endonuclease initiates a mating-type switch in the yeast S. cerevisiae by making a doublestrand cleavage in the DNA of the mating-type gene, MAT. Heterothallic strains of yeast have a stable mating type and contain a recessive ho allele. Here we report the sequence of the ho allele; ho has four point mutations all of which encode for substitute amino acids. The fourth mutation is a leucine to histidine substitution within a presumptive zinc finger. Chimeric HO/ho genes were constructed in vivo by converting different parts of the sequence of the genomic ho allele to the HO sequence by gene conversion. HO activity was assessed by three bioassays: a mating-type switch, extinction of expression of an a-specific reporter gene, and the appearance of Canr Ade- papillae resulting from excision of an engineered Ty element containing the HO-endonuclease target site and a SUP4 o gene. We found that the replacement of the fourth point mutation in ho to the HO sequence restored HO activity to the chimeric endonuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berg JM (1986) Science 232:485–487

    Google Scholar 

  • Berg JM (1988) Proc Natl Acad Sci USA 85:99–102

    Google Scholar 

  • Berg JM (1990) J Biol Chem 265:6513–6516

    Google Scholar 

  • Bray P, Thiesen H (1990) New Biol 2:325–327

    Google Scholar 

  • Budd ME, Wittrup KD, Bailey JE, Campbell JL (1989) Mol Cell Biol 9:365–376

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74:527–534

    Google Scholar 

  • Gimble FS, Thorner J (1992) Nature 357:301–306

    Google Scholar 

  • Hensgens LAM, Bonen L, de Haan M, van der Horst G, Grivell LA (1983) Cell 32:379–389

    Google Scholar 

  • Herskowitz I (1988) Microbiol Rev 52:536–553

    Google Scholar 

  • Hoekstra MF, Burbee D, Singer J, Mull E, Chiao E, Heffron F (1991) Proc Natl Acad Sci USA 88:5457–5461

    Google Scholar 

  • Ito H, Nakaseko Y, Murada K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jamieson AC, Kim SH, Wells JA (1994) Biochemistry 33:5689–5695

    Google Scholar 

  • Jensen RE, Sprague Jr GF, Herskowitz I (1983) Proc Natl Acad Sci USA 80:3035–3039

    Google Scholar 

  • Kostriken R, Heffron F (1984) Cold Spring Harbor Symp Quant Biol 49:89–97

    Google Scholar 

  • Kostriken R, Strathern JN, Klar AJS Hicks JB, Heffron F (1983) Cell 35:167–174

    Google Scholar 

  • Little MH, Prosser J, Condie A, Smith PJ, van Heyningen V, Hastie ND (1992) Proc Natl Acad Sci USA 89:4791–4795

    Google Scholar 

  • Ma H, Kunes S, Schatz PJ, Botstein D (1987) Gene 58:201–216

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Miller JA, McLachlan AD, Klug A (1985) EMBO J 4:1609–1614

    Google Scholar 

  • Modrow S, Wolf H (1986) Proc Natl Acad Sci USA 83:5703–5707

    Google Scholar 

  • Nickoloff JA, Chen EY, Heffron F (1986) Proc Natl Acad Sci USA 83:7831–7835

    Google Scholar 

  • Nickoloff JA, Singer JD, Heffron F (1990) Mol Cell Biol 10:1174–1179

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Methods Enzymol 101:228–245

    Google Scholar 

  • Parket A, Inbar O, Kupiec M (1995) Genetics (in press)

  • Perrin A, Buckle M, Dujon B (1993) EMBO J 12:2939–2947

    Google Scholar 

  • Raveh D, Hughes SH, Shafer BK, Strathern JN (1989) Mol Gen Gen 220:33–42

    Google Scholar 

  • Richardson JS, Richardson DC (1988) Science 240:1648–1652

    Google Scholar 

  • Rose MD, Novic P, Thomas JH, Botstein D, Fink GR (1987) Gene 60:237–243

    Google Scholar 

  • Russell DW, Jensen RE, Zoller MJ, Burke J, Errede B, Smith M, Herskowitz I (1986) Mol Cell Biol 6:4281–4294

    Google Scholar 

  • Sanger F, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Strathern JN, Klar AJS, Hicks JB, Abraham JA, Nasmyth KA, McGill C (1982) Cell 31:183–192

    Google Scholar 

  • Wilson KL, Herskowitz I (1986) Proc Natl Acad Sci USA 83:2536–2540

    Google Scholar 

  • Winge O, Robeerts C (1949) CR Trav Lab Carlsberg Ser Physiol 24:341–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Simchen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiron, H., Nahon, E. & Raveh, D. Identification of the heterothallic mutation in HO-endonuclease of S. cerevisiae using HO/ho chimeric genes. Curr Genet 28, 367–373 (1995). https://doi.org/10.1007/BF00326435

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326435

Key words

Navigation