Skip to main content
Log in

Spectro-temporal receptive fields of auditory neurons in the grassfrog

II. Analysis of the stimulus-event relation for tonal stimuli

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The nature of the stimulus-response relation for single auditory neurons is reflected in the properties of the Pre-Event Stimulus Ensemble: the ensemble of stimuli, preceding the occurrence of an action potential (neural event). This paper describes methods to analyse the spectro-temporal properties of this ensemble. These methods are based on the analytic signal representation of acoustic signals and functionals derived from it: the instantaneous amplitude and instantaneous frequency and the dynamic power spectrum. The procedures have been applied to a number of extra-cellular single unit recordings from the grassfrog, Rana temporatia L., recorded during presentation of an ensemble of tonal stimuli. The outcome of this analysis describes the spectro-temporal receptive field of the neuron under the present stimulus conditions. The procedure, based on the dynamic power spectrum is applicable to an arbitrary stimulus ensemble, thus allowing a comparison of the spectrotemporal receptive fields for different types of stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adrian, E.D., Cattell, M., Hoagland, H.: Sensory discharges in single cutaneous nerve fibers. J. Physiol. (London) 72, 377–391 (1931)

    Google Scholar 

  • Aertsen, A.M.H.J., Johannesma, P.I.M.: Spectro-temporal analysis of auditory neurons in the grassfrog. In: Hearing mechanisms and speech, pp. 87–93. Creutzfeld, O., Scheich, H., Schreiner, Chr. (eds.). Exp. Brain Res. [Suppl. II] (1979)

  • Aertsen, A.M.H.J., Johannesma, P.I.M.: Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli. Biol. Cybernetics 38, 223–234 (1980)

    Google Scholar 

  • Bullock, T.H. (ed.): Recognition of complex acoustic signals (Life Sciences Res. Rep., Vol. 5). Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Capranica, R.R.: The evoked vocal response of the bullfrog: a study of communication by sound. Cambridge, MA: MIT Press 1965

    Google Scholar 

  • Capranica, R.R.: Morphology and physiology of the auditory system. In: Frog neurobiology, a handbook, pp. 551–575. Llinas, R., Precht, W. (eds.) Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  • Capranica, R.R., Moffat, A.J.M.: Nonlinear properties of the peripheral auditory system. In: Comparative studies of hearing in vertebrates. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  • Dowben, R.M., Rose, J.E.: A metal-filled microelectrode. Science 118, 22–24 (1953)

    Google Scholar 

  • Eckhorn, R., Pöpel, B.: Generation of Gaussian noise with improved quasi-white properties. Biol. Cybernetics 32, 243–248 (1979)

    Google Scholar 

  • Evans, E.F.: Cochlear nerve and cochlear nucleus. In: Handbook of sensory physiology, Vol. V/2: Auditory system, pp. 1–108. Keidel, W.D., Neff, W.D. (eds.) Berlin, Heidelberg, New York: Springer 1975

    Google Scholar 

  • Feng, A.S.: Sound localization in anurans: an electrophysiological and behavioral study. Ph. D. Thesis, Cornell Univ., Ithaca. New York 1975

  • Flanagan, J.L.: Speech analysis, synthesis, and perception. Berlin, Heidelberg, New York: Springer 1965

    Google Scholar 

  • Gabor, D.: Theory of communication. J. IEE (London) Part III. 93, 429–457 (1946)

    Google Scholar 

  • Gelder, J.J. van, Evers, P.M.G., Maagnus, G.J.M.: Calling and associated behaviour of the common frog, Rana temporaria, during breeding activity. J. Anim. Ecol. 47, 667–676 (1978)

    Google Scholar 

  • Gerhardt, H.C.: The significance of some spectral features in mating call recognition in the green treefrog (Hyla cinerea). J. Exp. Biol. 61, 229–241 (1974)

    Google Scholar 

  • Gerhardt, H.C.: Mating call recognition in the green treefrog (Hyla cinerea): the significance of some fine-temporal properties. J. Exp. Biol. 74, 59–73 (1978)

    Google Scholar 

  • Gisbergen, J.A.M. van, Grashuis, J.L., Johannesma, P.I.M., Vendrik, A.J.H.: Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anaesthetized cat. Exp. Brain Res. 23, 367–386 (1975)

    Google Scholar 

  • Grashuis, J.L.: The pre-event stimulus ensemble: an analysis of the stimulus-response relation for complex stimuli applied to auditory neurons. Ph. D. Thesis, Nijmegen 1974

  • Grüsser, O.-J., Grüsser-Cornehls, U.: Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of sensory physiology, Vol. VII/3A: Central processing of visual information, pp. 333–429. Jung, R. (ed.). Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Hartline, H.K.: The receptive fields of the optic nerve fibers. Am. J. Physiol. 130, 690–699 (1940)

    Google Scholar 

  • Johannesma, P.I.M.: The pre-response stimulus ensemble of neurons in the cochlear nucleus. In: Proc. of the IPO Symp. on Hearing Theory, pp. 58–69. Cardozo, B.L. (ed.). Eindhoven 1972

  • Johannesma, P.I.M., Gisbergen, J.A.M. van, Grashuis, J.L., Vendrik, A.J.H.: Forward and backward analysis of stimulus response relations of single cells in the cochlear nucleus. In: Proc. IV International Biophysics Congress (IUPAB), Vol. 3, pp. 508–523. Moscow: USSR Academy of Sciences 1973

    Google Scholar 

  • Johannesma, P.I.M., Aertsen, A.M.H.J.: Neural image of sound in the grassfrog. In: Hearing mechanisms and speech, pp. 79–86. Creutzfeld, O., Scheich, H., Schreiner, Chr. (eds.). Exp. Brain Res. [Suppl. II] (1979)

  • Kiang, N.Y.-S., Watanabe, T., Thomas, E.C., Clark, L.F.: Discharge patterns of single fibers in the cat's auditory nerve. Cambridge, MA: MIT Press 1965

    Google Scholar 

  • Knudsen, E.I., Konishi, M.: Center-surround organization of auditory receptive fields in the owl. Science 202, 778–780 (1978)

    Google Scholar 

  • Koenig, W., Dunn, H.K., Lacy, L.Y.: The sound spectrograph. J. Acoust. Soc. Am. 18, 19–49 (1946)

    Google Scholar 

  • Lang, S.: Linear algebra. Reading, MA: Addison-Wesley 1973

    Google Scholar 

  • Lee, Y.W., Schetzen, M.: Measurement of the Wiener kernels of a nonlinear system by crosscorrelation. Int. J. Control 2, 237–254 (1965)

    Google Scholar 

  • Miller, J.M., Beaton, R.D., O'Connor, T., Pfingst, B.E.: Response pattern complexity of auditory cells in the cortex of unanesthetized monkeys. Brain Res. 69, 101–113 (1974)

    Google Scholar 

  • Nelson, P.G., Erulkar, S.D., Bryan, J.S.: Responses of units of the inferior colliculus to time-varying acoustic stimuli. J. Neurophysiol. 29, 834–860 (1966)

    Google Scholar 

  • Papoulis, A.: Probability, random variables and stochastic processes. Tokyo: McGraw-Hill Kogakusha 1965

    Google Scholar 

  • Potter, R.K., Kopp, G.A., Green, H.C.: Visible speech. New York: Van Nostrand 1947

    Google Scholar 

  • Rihaczek, A.W.: Signal energy distribution in time and frequency. IEEE Trans. Inf. Theory IT 14, 369–374 (1968)

    Google Scholar 

  • Scheich, H.: Central processing of complex sounds and feature analysis. In: Recognition of complex acoustic signals, pp 161–182. Bullock, T.H. (ed.). (Life Sciences Res. Rep., Vol. 5.) Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Sejnowski, T.J.: On global properties of neuronal interaction. Biol. Cybernetics 22, 85–95 (1976)

    Google Scholar 

  • Singleton, R.C., Poulter, T.C.: Spectral analysis of the call of the male killer whale. IEEE Trans. Audio Electroacoust. AU 15, 104–113 (1967)

    Google Scholar 

  • Smolders, J.W.T., Aertsen, A.M.H.J., Johannesma, P.I.M.: Neural representation of the acoustic biotope: a comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol. Cybernetics 35, 11–20 (1979)

    Google Scholar 

  • Suga, N., O'Neill, W.E., Watanabe, T.: Cortical neurons sensitive to combinations of information bearing elements of biosonar signals in the mustache bat. Science 200, 778–781 (1978)

    Google Scholar 

  • Swerup, C.: On the choice of noise for the analysis of the peripheral auditory system. Biol. Cybernetics 29, 97–104 (1978)

    Google Scholar 

  • Tolman, R.C.: The principles of statistical mechanics. London: Oxford University Press 1938

    Google Scholar 

  • Wickelgren, B.C.: Superior colliculus: some receptive field properties of bimodally responsive cells. Science 173, 69–71 (1971)

    Google Scholar 

  • Worden, F.G., Galambos, R. (eds.): Auditory processing of biologically significant sounds. (Neurosci. Res. Prog. Bull., Vol.10.) Brookline, MA: Neurosciences Research Program 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aertsen, A.M.H.J., Johannesma, P.I.M. & Hermes, D.J. Spectro-temporal receptive fields of auditory neurons in the grassfrog. Biol. Cybernetics 38, 235–248 (1980). https://doi.org/10.1007/BF00337016

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337016

Keywords

Navigation