Skip to main content
Log in

The initiation of voluntary movements by the supplementary motor area

  • Published:
Archiv für Psychiatrie und Nervenkrankheiten Aims and scope Submit manuscript

Summary

The hypothesis is formulated that in all voluntary movements the initial neuronal event is in the supplementary motor areas (SMA) of both cerebral hemispheres.

Experimental support is provided by three lines of evidence. 1. In voluntary movements many neurones of the SMA are activated probably up to 200 ms before the pyramidal tract discharge. 2. Investigations of regional cerebral blood flow by the radioactive Xenon technique reveal that there is neuronal activity in the SMA of both sides during a continual series of voluntary movements, and that this even occurs when the movement is thought of, but not excuted. 3. With voluntary movement there is initiation of a slow negative potential (the readiness potential, RP) at up to 0.8 s before the movement. The RP is maximum over the vertex, i.e. above the SMA, and is large there even in bilateral Parkinsonism when it is negligible over the motor cortex.

An account is given of the SMA, particularly its connectivities to the basal ganglia and the cerebellum that are active in the preprogramming of a movement. The concept of motor programs is described and related to the action of the SMA. It is proposed that each mental intention acts on the SMA in a specific manner and that the SMA has an ‘inventory’ and the ‘addresses’ of stored subroutines of all learnt motor programs. Thus by its neuronal connectivities the SMA is able to bring about the desired movement.

There is a discussion of the manner in which the mental act of intention calls forth neural actions in the SMA that eventually lead to the intended movement. Explanation is given on the basis of the dualist-interactionist hypothesis of mind-brain liaison. The challenge is to the physicalists to account for the observed phenomena in voluntary movement.

Zusammenfassung

Es wird die Hypothese begründet, daß allen Willkürbewegungen neurale Koordination der supplementären motorischen Areale (SMA) in beiden Großhirnhemisphären vorausgehen.

Drei experimentelle Grundlagen werden besprochen. 1. Viele Neurone des motorischen Supplementärfelds SMA werden bis zu 200 ms vor der Pyramidenentladung aktiviert. 2. Hirndurchblutungsmessungen mit der Xenontechnik zeigen einen vermehrten Blutfluß über beiden SMA, auch wenn die Bewegung nur gedacht, aber nicht ausgeführt wird. 3. Das Bereitschaftspotential vor Willkürbewegungen beginnt etwa 0,8 s vor der Bewegung und zeigt ein Maximum am Scheitel über beiden SMA, das auch bei Parkinsonpatienten mit sehr geringem Bereitschaftspotential über dem motorischen Cortex erhalten bleibt.

Durch Verbindungen der SMA zu Stammganglien und Kleinhirn entstehen wahrscheinlich Bewegungsprogrammierungen, die mit der SMA-Aktivität korreliert werden. Es wird angenommen, daßjede Bewegungsintention auf die SMA wirkt und daß deren Inventar für gespeicherte und erlernte motorische Programme die intendierten Bewegungen steuert, die durch neuronale Verbindungen der SMA entstehen. Die psychische Intention, die mit der SMA-Tätigkeit Bewegungen startet, wird mit der dualistisch-interaktionistischen Hypothese der Hirn-Seele-Verbindung erklärt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen GI, Tsukahara N (1974) Cerebro-cerebellar communication systems. Physiol Rev 54: 957–1006

    Google Scholar 

  • Allen GI, Gilbert PFC, Marini R, Yin TCT (1978) Convergence of cerebral inputs onto dentate neurons in monkey. Exp Brain Res 32:151–170

    Google Scholar 

  • Brinkman C, Porter R (1979) Supplementary motor area in the monkey: activity of neurons during performance of a learned motor test. J Neurophysiol 42:681–709

    Google Scholar 

  • Brooks VB (1979) Motor programs revisited. In: Talbot RE, Humphrey DR (eds) Posture and movement. Raven Press, New York, pp 13–49

    Google Scholar 

  • Deecke L, Kornhuber HH (1977) Cerebral potentials and the initiation of voluntary movement. In: Desmedt JE (ed) Attention, voluntary contraction and event-related cerebral potentials. Progr Clin Neurophysiol, Vol 1. Karger, Basel, pp 132–150

    Google Scholar 

  • Deecke L, Kornhuber HH (1978) An electrical sign of participation of the mesial ‘supplementary’ motor cortex in human voluntary finger movement. Brain Res 157:473–476

    Google Scholar 

  • Deecke L, Englitz HG, Kornhuber HH, Schmitt G (1977) Cerebral potentials preceding voluntary movement in patients with bilateral or unilateral Parkinson Akinesia. In: Desmedt JE (ed) Attention, voluntary contraction and event-related cerebral potentials. Prog Clin Neurophysiol, Vol 1. Karger, Basel, pp 151–163

    Google Scholar 

  • DeLong MR (1971) Activity of Pallidal neurons during movement. J Neurophysiol 34:414–427

    Google Scholar 

  • DeLong MR (1974) Motor functions of the basal ganglia: Single-unit activity during movement. In: Schmitt FO, Worden FG (eds) The neurosciences: Third study programm. MIT Press, Cambridge, MA, pp 319–325

    Google Scholar 

  • DeLong MR, Strick PL (1974) Relation of basal ganglia, cerebellum and motor cortex units to ramp and ballistic limb movements. Brain Res 71:327–335

    Google Scholar 

  • Desmedt JE, Godaux E (1979) Voluntary motor commands in human ballistic and ramp movements. Ann Neurol 5:415–421

    Google Scholar 

  • Eccles JC (1977) An instruction-selection theory of learning in the cerebellar cortex. Brain Res 127:327–352

    Google Scholar 

  • Eccles JC (1979) Introductory remarks. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier/North Holland, Amsterdam, pp 1–18

    Google Scholar 

  • Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neurosciences 6:1839–1856

    Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force ecerted during voluntary movement. J Neurophysiol 31:14–27

    Google Scholar 

  • Evarts EV (1972) Contrasts between activity of precentral and postcentral neurons of cerebral cortex during movement in the monkey. Brain Res 40:25–31

    Google Scholar 

  • Freund HJ (1981) Some aspects of voluntary innervation. Personal communication

  • Goldman PS, Nauta WJH (1977) An intricately patterned prefrontocaudate projection in the rhesus monkey. J Comp Neurol 171:369–386

    Google Scholar 

  • Goldring S, Ratcheson R (1972) Human motor cortex: sensory input data from single neuron recordings. Science 175:1493–1495

    Google Scholar 

  • Harvey RJ, Porter R, Rawson JA (1979) Discharges of intracerebellar nuclear cells in monkeys. J Physiol 297:559–589

    Google Scholar 

  • Horn MK, Porter R (1980) The discharges during movement of cells in the ventrolateral thalamus of the conscious monkey. J Physiol 304:349–373

    Google Scholar 

  • Iansek R, Porter R (1980) The monkey globus pallidus: neuronal discharge properties in relation to movement. J Physiol 301:439–455

    Google Scholar 

  • Jones EG, Powell TPS (1969) Connections of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connexions. Brain 92:477–502

    Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:783–820

    Google Scholar 

  • Kenny A (1963) Action, emotion and will. Routlege and Kegan Paul, London and Henley

    Google Scholar 

  • Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca Fascicularis. Brain Res 88:195–209

    Google Scholar 

  • Libet B (1981) Personal communication

  • Macpherson JM, Marangoz C, Miles TS, Wiesendanger M (1981) Movements evoked by intracortical microstimulation in the supplementary motor area (SMA). Abstract. Society for Neuroscience 7:565

    Google Scholar 

  • Pandya DN, Vignolo LA (1971) Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res 26:217–233

    Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown & Co, Boston

    Google Scholar 

  • Penfield W, Roberts L (1959) Speech and brain-mechanisms. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Phillips CG, Porter R (1977) Corticospinal neurones: Their role in movement. Academic Press, London New York

    Google Scholar 

  • Roland PE, Larsen B, Lassen NA, Skinhøj E (1980a) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43:118–136

    Google Scholar 

  • Roland PE, Skinhøj E, Lassen NA, Larsen B (1980b) Different cortical areas in man in organization of voluntary movement in extrapersonal space. J Neurophysiol 43:137–150

    Google Scholar 

  • Sasaki K (1979) Cerebro-cerebellar interconnections in cats and monkeys. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier/North Holland, Amsterdam, pp 105–124

    Google Scholar 

  • Thach WT (1970) Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J Neurophysiol 33:527–536

    Google Scholar 

  • Thach WT (1975) Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res 88:233–241

    Google Scholar 

  • Thach WT (1978) Single unit studies of long loops involving the motor cortex and cerebellum during limb movement in monkeys. In: Desmedt JE (ed) Cerebral motor control in man: Long loop mechanisms. Progr Clin Neurophysiol, Vol 4. Karger, Basel, pp 94–106

    Google Scholar 

  • Wiesendanger M, Séguin JJ, Künzle H (1973) The supplementary motor area — a control system for posture? In: Stein RB, Pearson KC, Smith RS, Redford JB (eds) Control of posture and locomotion. Plenum Press, New York, pp 331–346

    Google Scholar 

  • Woolsey CN, Settlage PH, Meyer DR (1952) Patterns of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area. In: Patterns of organization in the central nervous system. Res Publ Assoc Res Nerv Ment Diseases, Vol 30. Williams & Wilkins, Baltimore, pp 238–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Richard Jung on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eccles, J.C. The initiation of voluntary movements by the supplementary motor area. Arch Psychiatr Nervenkr 231, 423–441 (1982). https://doi.org/10.1007/BF00342722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00342722

Key words

Schlüsselwörter

Navigation