Skip to main content
Log in

DNA organization and polymorphism of a wild-type Drosophila telomere region

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wildtype strain of D. melanogaster, including a minisatellite with a 457 bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gisg W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    Google Scholar 

  • Ashburner M (1989) Drosophila, a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  • Åslund L, Franzen L, Westin G, Persson T, Wigzell H, Petterson U (1985) Highly reiterated non-coding sequence in the genome of P. falciparum is composed of 21 base-pair tandem repeats. J Mol Biol 185: 509–516

    Google Scholar 

  • Bachmann L, Raab M, Sperlich D (1990) Evolution of a telomere associated satellite DNA sequence in the genome of Drosophila tristis and related species. Genetica 83: 9–16

    Google Scholar 

  • Bedbrook JR, Jones J, O'Dell M, Thompson RD, Flavell RB (1980a) A molecular description of telomeric heterochromatin in Secale species. Cell 19: 545–560

    Google Scholar 

  • Bedbrook JR, O'Dell M, Flavell RB (1980b) Amplification of rearranged repeated DNA sequences in cereal plants. Nature 288: 133–137

    Google Scholar 

  • Biessmann H, Mason JM (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J 7: 1081–1086

    Google Scholar 

  • Biessmann H, Mason JM (1992) Genetics and molecular biology of telomeres. Adv Genet 30: 185–249

    Google Scholar 

  • Biessmann H, Carter SB, Mason JM (1990a) Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci USA 87: 1758–1761

    Google Scholar 

  • Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K, Traverse KL, Pardue ML (1990b) Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61: 663–673

    Google Scholar 

  • Biessmann H, Champion LE, O'Hair M, Ikenaga K, Kasravi B, Mason JM (1992a) Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J 11: 4459–4469

    Google Scholar 

  • Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML (1992b) HeT-A, a transposable element specifically involved in healing broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12: 3910–3918

    Google Scholar 

  • Biessmann H, Kasravi B, Jakes K, Bui T, Ikenaga K, Mason JM (1993) The genomic organization of HeT-A retroposons in Drosophila melanogaster. Chromosoma 102: 297–305

    Google Scholar 

  • Biessmann H, Kasravi B, Bui T, Fujiwara G, Champion LE, Mason JM (1994) Comparison of two active HeT-A retroposons of Drosophila melanogaster. Chromosoma 103: 90–98

    Google Scholar 

  • Brown WR, MacKinnon PJ, Villasante A, Spurr N, Buckle VJ, Dobson MJ (1990) Structure and polymorphism of human telomere-associated DNA. Cell 63: 119–132

    Google Scholar 

  • Burmeister M, Kim S, Price ER, Lange Tde, Tantravahi U, Myers RM, Cox DR (1991) A map of the distal region of the long arm of human chromosome 21 constructed by radiation hybrid mapping and pulsed-field gel electrophoresis. Genomics 9: 19–30

    Google Scholar 

  • Carmona MJ, Morcillio G, Galler R, Martinez-Salas E, Campa AGde la, Edström JE (1985) Cloning and molecular characterization of a telomeric sequence from a temperature-induced Baliani ring. Chromosoma 92: 108–115

    Google Scholar 

  • Cheng JF, Smith CL, Cantor CR (1989) Isolation and characterization of a human telomere. Nucleic Acids Res 17: 6109–6127

    Google Scholar 

  • Cohn M, Edström JE (1991) Evolutionary relations between subtypes of telomere-associated repeats in Chironomus. J Mol Evol 32: 463–468

    Google Scholar 

  • Cohn M, Edström JE (1992a) Chromosome ends in Chironomus pallidivittatus contain different subfamilies of telomere-associated repeats. Chromosoma 101: 634–640

    Google Scholar 

  • Cohn M, Edström JE (1992b) Telomere-associated repeats in Chironomus form discrete subfamilies generated by gene conversion. J Mol Evol 35: 114–122

    Google Scholar 

  • Cooke HJ, Brown WR, Rappold GA (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317: 687–692

    Google Scholar 

  • Corcoran LM, Thompson JK, Walliker D, Kemp DJ (1988) Homologous recombination within subtelomeric repeat sequences generates chromosome size polymorphisms in P. falciparum. Cell 53: 807–813

    Google Scholar 

  • Danilevskaya ON, Petrov DA, Pavlova MN, Koga A, Kurenova EV, Hartl DL (1992) A repetitive DNA element, associated with telomeric sequences in Drosophila melanogaster, contains open reading frames. Chromosoma 102: 32–40

    Google Scholar 

  • Danilevskaya O, Slot F, Pavlova M, Pardue ML (1994) Structure of the Drosophila HeT-A transposon: a retrotransposon-like element forming telomeres. Chromosoma 103: 215–224

    Google Scholar 

  • Dorer DR, Henikoff S (1994) Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002

    Google Scholar 

  • Ellis N, Goodfellow PN (1989) The mammalian pseudoautosomal region. Trends Genet 5: 406–410

    Google Scholar 

  • Emery HS, Weiner AM (1981) An irregular satellite sequence is found at the termini of the linear extrachromosomal rDNA in Dictyostelium discoideum. Cell 26: 411–419

    Google Scholar 

  • Foote SJ, Kemp DJ (1989) Chromosomes of malaria parasites. Trends Genet 5: 337–342

    Google Scholar 

  • Gasser SM, Laemmli UK (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulating genes of D. melanogaster. Cell 46: 521–530

    Google Scholar 

  • Gehring WJ, Klemenz R, Weber U, Kloter U (1984) Functional analysis of the white +gene of Drosophila by P-factor-mediated transformation. EMBO J 3: 2077–2085

    Google Scholar 

  • Gilson E, Laroche T, Gasser SM (1993) Telomeres and the functional architecture of the nucleus. Trends Cell Biol 3: 128–134

    Google Scholar 

  • Golubovsky MD (1978) The “lethal giant larvae”-the most frequent second chromosome lethal in natural populations of D. melanogaster. Dros Inform Serv 53: 179

    Google Scholar 

  • Golubovsky MD, Sokolova KB (1973) The expression and interaction of different alleles at the l(2)gl locus. Dros Inform Serv 50: 124

    Google Scholar 

  • Green MM, Shepherd SH (1979) Genetic instability in Drosophila melanogaster: the induction of specific chromosome 2 deletions by MR elements. Genetics 92: 823–832

    Google Scholar 

  • Guntaka RV, Gowda S, Rao AS, Green TJ (1985) Organization of Plasmodium falciparum genome. I. Evidence for a highly repeated DNA sequence. Nucleic Acids Res 13: 1965–1975

    Google Scholar 

  • Hawley RS (1980) Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics 94: 625–646

    Google Scholar 

  • Hazelrigg T, Levis RW, Rubin GM (1984) Transformation of white locus DNA in Drosophila: dosage compensation, zeste interaction, and position effects. Cell 36: 469–481

    Google Scholar 

  • Hinton T (1945) A study of chromosome ends in salivary gland nuclei of Drosophila. Biol Bull Woods Hole 88: 144–165

    Google Scholar 

  • Hinton T, Atwood KC (1941) Terminal adhesions of salivary gland chromosomes in Drosophila. Proc Natl Acad Sci USA 27: 491–496

    Google Scholar 

  • Horowitz H, Haber JE (1984) Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence. Nucleic Acids Res 12: 7105–7121

    Google Scholar 

  • Horowitz H, Thorburn P, Haber JE (1984) Rearrangements of highly polymorphic regions near telomeres of Saccharomyces cerevisiae. Mol Cell Biol 4: 2509–2517

    Google Scholar 

  • Jacob L, Opper M, Metzroth B, Phannavong B, Mechler BM (1987) Structure of the l(2)gl gene of Drosophila and delimitation of its tumor suppressor domain. Cell 50: 215–225

    Google Scholar 

  • Jeffreys AJ, Tamaki K, MacLeod A, Monckton DG, Neil DL, Armour JAL (1994) Complex gene conversion events in germline mutation at human minisatellites. Nature Genet 6: 136–145

    Google Scholar 

  • Karpen GH, Spradling AC (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp 1187 by single-P element insertional mutagenesis. Genetics 132: 737–753

    Google Scholar 

  • Kaufmann BP, Gay H (1969) The capacity of the fourth chromosome of Drosophila melanogaster to establish end-to-end contacts with the other chromosomes in salivary gland cells. Chromosoma 26: 395–409

    Google Scholar 

  • Lange Tde, Shine L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10: 518–527

    Google Scholar 

  • Levis R, Hazelrigg T, Rubin GM (1985) Effects of genome position on the expression of transduced copies of the white gene of Drosophila. Science 229: 558–561

    Google Scholar 

  • Levis RW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58: 791–801

    Google Scholar 

  • Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM (1993) Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083–1093

    Google Scholar 

  • Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est 1-senescence. Cell 73: 347–360

    Google Scholar 

  • Maguire M (1984) The mechanism of meiotic homologue pairing. J Theor Biol 106: 605–615

    Google Scholar 

  • Mason JM, Biessmann H (1995) The unusual telomeres of Drosophila. Trends Genet 11: 58–62

    Google Scholar 

  • Mason JM, Strobel E, Green MM (1984) mu-2: Mutator gene in Drosophila that potentiates the induction of terminal deficiencies. Proc Natl Acad Sci USA 81: 6090–6094

    Google Scholar 

  • Mechler BM, McGinnis W, Gehring WJ (1985) Molecular cloning of lethal(2) giant larvae, a recessive oncogene of Drosophila melanogaster. EMBO J 4: 1551–1557

    Google Scholar 

  • Myerowitz EM, Hogness DS (1982) Molecular organization of a Drosophila puff site that responds to ecdysone. Cell 28: 165–178

    Google Scholar 

  • Nielsen L, Edström JE (1993) Complex telomere-associated repeat units in members of the genus Chironomus evolve from sequences similar to simple telomeric repeats. Mol Cell Biol 13: 1583–1589

    Google Scholar 

  • Nielsen L, Schmidt ER, Edström JE (1990) Subrepeats result from regional DNA sequence conservation in tandem repeats in Chironomus telomeres. J Mol Biol 216: 577–584

    Google Scholar 

  • Oquendo P, Goman M, Mackay M, Langsley G, Walliker D, Scaife J (1986) Characterisation of a repetitive DNA sequence from the malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 18: 89–101

    Google Scholar 

  • Pace T, Ponzi M, Dore E, Frontali C (1987) Telomeric motifs are present in a highly repetitive element in the Plasmodium berghei genome. Mol Biochem Parasitol 24: 193–202

    Google Scholar 

  • Pace T, Ponzi M, Dore E, Janse C, Mons B, Frontali C (1990) Long insertions within telomeres contribute to chromosome size polymorphism in Plasmodium berghei. Mol Cell Biol 10: 6759–6764

    Google Scholar 

  • Pereira A, Doshen J, Tanaka E, Goldstein LSB (1992) Genetic analysis of a Drosophila microtubule-associated protein. J Cell Biol 116: 377–383

    Google Scholar 

  • Rappold G, Willson TA, Henke A, Gough NM (1992) Arrangement and localization of the human GM-CSF receptor α chain gene CSF2RA within the X-Y pseudoautosomal region. Genomics 14: 455–461

    Google Scholar 

  • Rouyer F, Chapelle Ade la, Andersson M, Weissenbach J (1990) An interspersed repeated sequence specific for human subtelomeric regions. EMBO J 9: 505–514

    Google Scholar 

  • Saiga H, Edström JE (1985) Long tandem arrays of complex repeat units in Chironomus telomeres. EMBO J 4: 799–804

    Google Scholar 

  • Scherer G, Tschudi C, Perera J, Delius H, Pirrotta V (1983) B104, a new dispersed repeated gene family in Drosophila melanogaster and its analogies with retroviruses. J Mol Biol 157: 435–451

    Google Scholar 

  • Sheen FM, Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91: 12510–12514

    Google Scholar 

  • Simmler M-C, Rouyer F, Vergnaud G, Nyström-Lahti M, Ngo KY, Chapelle Ade la, Weissenbach J (1985) Pseudoautosomal DNA sequences in the pairing region of the human sex chromosomes. Nature 317: 692–697

    Google Scholar 

  • Simmler MC, Johnsson C, Petit C, Rouyer F, Vergnaud G, Weissenbach J (1987) Two highly polymorphic minisatellites from the pseudoautosomal region of the human sex chromosomes. EMBO J 6: 963–969

    Google Scholar 

  • Tower J, Karpen GH, Craig N, Spradling AC (1993) Preferential transposition of Drosophila P elements to nearby chromosomal sites. Genetics 133: 347–359

    Google Scholar 

  • Wallrath LL, Elgin SCR (1995) Position effect variegation in Drosophila is associated with an altered chromatin structure. Genes Dev 9: 1263–1277

    Google Scholar 

  • Wertman KF, Wyman AR, Botstein D (1986) Host/vector interactions which affect the viability of recombinant phage lambda clones. Gene 49: 253–262

    Google Scholar 

  • Wilkie AO, Higgs DR, Rach KA, Buckle VJ, Spurr NK, Fischel-Ghodsian N, Ceccherini I, Brown WR, Harris PC (1991) Stable length polymorphism of up to 260 kb at the tip of the short arm of human chromosome 16. Cell 64: 595–606

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walter, M.F., Jang, C., Kasravi, B. et al. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 104, 229–241 (1995). https://doi.org/10.1007/BF00352254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352254

Keywords

Navigation