Skip to main content
Log in

Base composition of DNA from symbiotic dinoflagellates: a tool for phylogenetic classification

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

DNA of eight endosymbiotic dinoflagellates (zooxanthellae) from seven different host species has been analyzed as to its thermal characteristics and base composition by means of spectrophotometry and high performance liquid chromatography. All algae under investigation contain both methylcytosine and hydroxymethyluracil in addition to the bases typical of nuclear DNA. As a result, melting temperatures are decreased, suggesting lower contents of guanine plus cytosine than actually present. True percentages of guanine plus cytosine plus methylcytosine range from about 43 to 54 mol%. They are unique for the symbionts from different hosts, indicating phylogenetic separation of the taxa comparised within the genus Symbiodinium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

dA:

deoxyadenosine

dC:

deoxycytidine

dG:

deoxyguanosine

dT:

deoxythymidine

m5dC:

5-methyldeoxycytidine

hmdU:

5-hydroxymethyldeoxyuridine

rC:

ribocytidine

Br8G:

bromine-80guanosine

A:

adenine

C:

cytosine

G:

guanine

T:

thymine

m5C:

5-methylcytosine

hmU:

5-hydroxymethyluracil

G+C:

guanine plus cytosine plus 5-methylcytosine

HPLC:

high performance liquid chromatography

T m :

temperature at the midpoint of hyperchromic shift

CTAB:

N-cetyl-N,N,N-trimethyl-ammonium bromide

EDTA:

ethylenediamine-tetraacetic acid, disodium salt

TRIS:

tris-(hydroxymethyl)-aminomethane

1×SSC:

standard saline citrate (0.15 M NaCl+0.015 M trisodium citrate, pH 7.0)

References

  • Beam CA, Himes M (1977) Sexual isolation and genetic diversification among some strains of Crypthecodinium cohnii-like dinoflagellates: evidence for speciation. J Protozool 24:532–539

    Google Scholar 

  • Beam CA, Himes M (1982) Distribution of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 29:8–15

    Google Scholar 

  • Beam CA, Himes M (1987) Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae) species complex. J Protozool 34:204–217

    Google Scholar 

  • Blank RJ (1986) Unusual chloroplast structures in endosymbiotic dinoflagellates: a clue to evolutionary differentiation within the genus Symbiodinium (Dinophyceae). Pl Syst Evol 151:271–280

    Google Scholar 

  • Blank RJ (1987a) Cell architecture of the dinoflagellate Symbiodinium sp. inhabiting the Hawaiian stony coral Montipora verrucosa. Mar Biol 94:143–155

    Google Scholar 

  • Blank RJ (1987b) Presumed gametes of Symbiodinium: feintings by a fungal parasite? Endocyt Cell Res 4:297–304

    Google Scholar 

  • Blank RJ, Trench RK (1985a) Speciation and symbiotic dinoflagellates. Science 229:656–658

    Google Scholar 

  • Blank RJ, Trench RK (1985b) Symbiodinium microadriaticum: a single species? In: Gabrie C, Toffart JL, Salvat B (eds) Proceedings of the fifth International Coral Reef Congress, vol 6. Antenne du Museum National d'Histoire Naturelle et de l'Ecole Pratique des Hautes Etudes, Papeete, pp 113–117

  • Blank RJ, Trench RK (1986) Nomenclature of endosymbiotic dinoflagellates. Taxon 35:286–294

    Google Scholar 

  • De Ley J (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101:738–754

    Google Scholar 

  • Douglas AE, Huss VAR (1986) On the characteristics and taxonomic position of symbiotic Chlorella. Arch Microbiol 145:80–84

    Google Scholar 

  • Duclaux GN (1977) Recherches sur quelques associations symbiotiques d'algues et de métazoaires. Thèse de doctorat, Université de Paris

  • Ebert P (1985) Einfluß von Polyaminen auf die DNA-Replikation und auf die Methylierung der DNA bei der induzierten Zelldifferenzierung. Diss, Univ Erlangen-Nürnberg

  • Fitt WK, Trench RK (1983) The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. New Phytol 94:421–432

    Google Scholar 

  • Franker CK (1970) Some properties of DNA from zooxanthellae harboured by an anemone Anthopleura elegantissima. J Phycol 6:299–305

    Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Protozool 9:45–52

    Google Scholar 

  • Hollande A, Carré D (1974) Les xanthelles des radiolaires sphaerocollides, des acanthaires et de Velella velella. Infrastructure —cytochemie — taxonomie. Protistologica 10:573–601

    Google Scholar 

  • Huss VAR, Dörr R, Grossmann U, Kessler E (1986) Deoxyribonucleic acid reassociation in the taxonomy of the genus Chlorella. I. Chlorella sorokiniana. Arch Microbiol 145:329–333

    Google Scholar 

  • Kallen RG, Simon M, Marmur J (1969) The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyluracil. J Mol Biol 5:248–250

    Google Scholar 

  • Kerfin W, Kessler E (1978) Physiological and biochemical contributions to the taxonomy of the genus Chlorella. XI. DNA hybridization. Arch Microbiol 116:97–103

    Google Scholar 

  • Kuo KC, McCune RA, Gehrke CW (1980) Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucl Acids Res 8:4763–4776

    Google Scholar 

  • Loeblich AR (1984) Dinoflagellate evolution. In: Spector DL (ed) Dinoflagellates. Academic Press, Orlando San Diego New York London Toronto Montreal Sydney Tokyo, pp 481–522

    Google Scholar 

  • Loeblich AR, Sherley JL (1979) Observations on the theca of the motile phase of free-living and symbiotic Zooxanthella microadriatica (Freudenthal) comb. nov. J Mar Biol Ass UK 59:195–206

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. Mol Biol 3:208–218

    Google Scholar 

  • Rae PMM (1976) Hydroxymethyluracil in eukaryote DNA: a natural base of the Pyrrophyta (dinoflagellates) Science 194:1062–1064

    Google Scholar 

  • Rae PMM, Steele RE (1978) Modified bases in the DNAs of unicellular eukaryotes: an examination of distributions and possible roles, with emphasis on hydroxymethyluracil in dinoflagellates. BioSystems 10:37–53

    Google Scholar 

  • Spero HJ (1987) Symbiosis in the planktonic foraminifer Orbulina universa, and the isolation of its symbiotic dinoflagellate, Gymnodinium béii sp. nov. J Phycol 23:307–317

    Google Scholar 

  • Steele RE, Rae PMM (1980) Comparison of DNAs of Crypthecodinium cohnii-like dinoflagellates from widespread geographical locations. J Protozool 27:479–483

    Google Scholar 

  • Taylor DL (1969) Identity of zooxanthellae isolated from some Pacific Tridacnidae. J Phycol 5:336–340

    Google Scholar 

  • Taylor DL (1973) The cellular interactions of algal-invertebrate symbiosis. Adv Mar Biol 11:1–56

    Google Scholar 

  • Taylor DL (1974) Symbiotic marine algae: taxonomy and biological fitness. In: Vernberg WB (ed) Symbiosis in the sea. University of South Columbia Press, Columbia, pp 245–262

    Google Scholar 

  • Taylor DL (1984) Autotrophic eukaryotic marine symbionts. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 17. Springer, Berlin Heidelberg New York, pp 75–90

    Google Scholar 

  • Taylor FJR (1983) Possible free-living Symbiodinium microadriaticum (Dinophyceae) in tide pools in southern Thailand. In: Schent HEA, Schwemmler W (eds) Endocytobiology, vol 2. De Gruyter, Berlin New York, pp 1009–1014

    Google Scholar 

  • Trench RK, Blank RJ (1987) Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23:469–481

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blank, R.J., Huss, V.A.R. & Kersten, W. Base composition of DNA from symbiotic dinoflagellates: a tool for phylogenetic classification. Arch. Microbiol. 149, 515–520 (1988). https://doi.org/10.1007/BF00446754

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446754

Key words

Navigation