Skip to main content
Log in

The dithizone, Timm's sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS

A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

From rats intravitally treated with dithizone (diphenyl-thiocarbazone) brains and spinal cords were removed and freeze-dried. The dithizonates present in the CNS tissue were extracted with carbon tetrachloride and subjected to a multielement analysis (proton activation, PIXE). It was found that the extract contained two metals. Most of the metal was zinc, but small traces of copper were also dectected. Because prior treatment with the chelating agent, dithizone, can block both the Timm and the selenium metal staining methods, it is suggested that the three techniques label predominantly zine in the neuropil (DTS-zine).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner A, Hornykiewicz O, Lisch H-J, Springer A (1967) Beeinflussung der Gehirn-Katecholamine, der Spontanaktivität und der l-DOPA Hyperaktivität durch Diäthyldithiocarbamat. Med Pharmacol Exp 17:576–585

    Google Scholar 

  • Crawford IL, Doller HJ, Connor JD (1973) Diphenylthiocarbazone effects on evoked waves and zinc in the rat hippocampus. Pharmacologist 15:197

    Google Scholar 

  • Danscher G (1976) Heavy metals in the hippocampal region. Some aspects of localization, function and content with special emphasis on the effect of chelating agents. Thesis, University of Aarhus, Denmark

    Google Scholar 

  • Danscher G (1982) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76:281–293

    Google Scholar 

  • Danscher G (1984a) Similarities and differences in the localization of metals in rat brains after treatment with sodium sulphide and sodium selenide. In: Frederickson CJ, Howell GA, Kasarskis E (eds) Neurobiology of zinc, Part A. Alan R Liss, New York, pp 229–242

    Google Scholar 

  • Danscher G (1984b) Do the Timm sulphide silver method and the selenium method demonstrate zinc in the brain? In: Frederickson CJ, Howell GA, Kasarskis E (eds) Neurobiology of zinc, Part A. Alan R Liss, New York, pp 273–287

    Google Scholar 

  • Danscher G (1984c) Dynamic changes in the stainability of rat hippocampal mossy fiber boutons after local injection of sodium sulphide, sodium selenite, and sodium diethyldithiocarbamate. In: Frederickson CJ, Howell GA, Kasarskis E (eds) Neurobiology of zinc, Part B. Alan R Liss, New York, pp 177–191

    Google Scholar 

  • Danscher G, Fredens K (1972) The effect of oxine and alloxan on the sulfide silver stainability of the rat brain. Histochemie 30:307–314

    Google Scholar 

  • Danscher G, Haug F-MS, Fredens K (1973) Effect of diethyldithiocarbamate (DEDTC) on sulphide silver stained boutons. Reversible blocking of Timm's sulphide silver stain for “heavy” metals in DEDTC treated rats (light microscopy). Exp Brain Res 16:521–532

    Google Scholar 

  • Danscher G, Shipley MT, Andersen P (1975) Persistent function of mossy fibre synapses after metal chelation with DEDTC (Antabuse). Brain Res 85:522–526

    Google Scholar 

  • Euler C von (1962) On the significance of the high zinc content in the hippocampal formation. In: Passouant P (ed) Physiologie de l'hippocampe. Centre National de la Recherche Scientifique, Paris, pp 135–145

    Google Scholar 

  • Fleischhauer K, Ohnesorge FK (1958) Zur Pharmakologie des Dithizon. Naunyn-Schmiedeberg's Arch Exp Pathol Pharmakol 235:63–77

    Google Scholar 

  • Frederickson CJ, Howell GA (1984) Merits and demerits of zinc dithizonate histochemistry. In: Fredericksen CJ, Howell GA, Kasarskis E (eds) Neurobiology of zinc, Part A. Alan R Liss, New York, pp 289–303

    Google Scholar 

  • Frederickson CJ, Howell GA, Frederickson MH (1981) Zinc dithizonate staining in the cat hippocampus: Relationship to the mossy-fiber neuropil and postnatal development. Exp Neurol 73:812–823

    Google Scholar 

  • Friedman B, Price JL (1984) Fiber systems in the olfactory bulb and cortex: a study in adult and developing rats, using the Timm method with the light and clectron microscope. J Comp Neurol 223:88–109

    Google Scholar 

  • Haug F-MS (1967) Electron microscopical localization of the zinc in hippocampal mossy fibre synapses by a modified sulphide silver procedure. Histochemie 8:355–368

    Google Scholar 

  • Haug F-MS, Danscher G (1971) Effect of intravital dithizone treatment on the Timm sulfide silver pattern of rat brain. Histochemie 27:290–299

    Google Scholar 

  • Hesse GW (1978) Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers. Science 205:1005–1007

    Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and relcase of zinc in hippocampal slices. Nature 308:736–738

    Google Scholar 

  • Howell GA, Pérez-Clausell J, Kemp K, Danscher G (1985) Chelatable zinc in the rat CNS. In preparation

  • Ibata Y, Otsuka N (1969) Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulphide silver technique. J Histochem Cytochem 17:171–175

    Google Scholar 

  • Johansson SAE, Johansson TB (1976) Analytical application of particle induced X-ray emission. Nucl Instrum Methods 137:473–516

    Google Scholar 

  • Kemp K, Danscher G (1979) Multi-element analysis of the rat hippocampus by proton-induced X-ray emission spectroscopy (phosphorus, sulphur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine, and rubidium). Histochemistry 59:167–176

    Google Scholar 

  • Koenig W, Richter FW, Steiner U, Stock R, Thielman R, Wätjen U (1977) Trace element analysis by means of particle induced X-ray emission with triggered beam pulsing. Nucl Instrum Methods 142:225–229

    Google Scholar 

  • Lenglet WJM, Bos AJJ, Stap CCAH, Vis RD, Delhez H, Hamer CJA (1984) Discrepancies between histological and physical methods for trace element mapping in the rat brain. Histochemistry 81:305–309

    Google Scholar 

  • López Garcia C, Molowny A, Pérez-Clausell J (1984) Volumetric and densitometric study in the cerebral cortex and septum of a lizard (Lacerta galloti) using the Timm method. Neurosci Lett 40:13–18

    Google Scholar 

  • Maj J, Vetulani J (1970) Some pharmacological properties of N,N-disubstituted dithiocarbamates and their effect on the brain catecholamine levels. Eur J Pharmacol 9:183–189

    Google Scholar 

  • Maske H (1955) Über den topochemischen Nachweis von Zink im Ammonshorn verschiedener Säugetiere. Naturwissenschaften 42:424

    Google Scholar 

  • McLardy T (1960) Neurosyncytial aspects of the hippocampal mossy fibre system. Confin Neurol (Basel) 20:1–17

    Google Scholar 

  • Moore KE (1969) Effects of disulfiram and diethyldithiocarbamate on spontaneous locomotor activity and brain catecholamine levels in mice. Biochem Pharmacol 18:1627–1634

    Google Scholar 

  • Otsuka N, Ibata Y (1966) Über die quantiativen Veränderungen des Zinkgehaltes in der Hippocampusformation nach der Dithizon-Zufuhr. Arch Histol Jpn 27:419–424

    Google Scholar 

  • Pérez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91–98

    Google Scholar 

  • Schrøder HD, Fjcrdingstad E, Danscher G, Fjerdingstad EJ (1978) Heavy metals in the spinal cord of normal rats and of animals treated with chelating agents: a quantitative (zinc, copper, and lead) and histochemical study. Histochemistry 56:1–12

    Google Scholar 

  • Stampfl VB (1959) Die intravitale histochemische Darstellung des Zinks durch Dithizon. Acta Hisotchem 8:406–447

    Google Scholar 

  • Szerdahclyi P (1982) Lack of correlation between trace metal staining and trace metal content of the rat hippocampus following colchicine microinjection. Histochemistry 74:563

    Google Scholar 

  • Szerdahelyi P, Kása P (1984) Histochemistry of zinc and copper. Int Rev Cytol 89:1–33

    Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silber-Verfahren. Dtsch Z Gesamte Gerichtl Med 46:706–711

    Google Scholar 

  • Timm F (1961) Der histochemische Nachweis des Kupfers im Gehirn. Histochemie 2:332–341

    Google Scholar 

  • Walter RL, Willis RD, Gutknecht WF, Joyce JM (1974) Analysis of biological, clinical, and environmental samples using proton-induced X-ray emission. Anal Chem 46:843–855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danscher, G., Howell, G., Pérez-Clausell, J. et al. The dithizone, Timm's sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. Histochemistry 83, 419–422 (1985). https://doi.org/10.1007/BF00509203

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00509203

Keywords

Navigation