Skip to main content
Log in

‘Matched filters’ — neural models of the external world

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ali MA (1978) Sensory ecology. Review and perspectives. Plenum Press, New York London

    Google Scholar 

  • Autrum H (1940) Über Lautäußerungen und Schallwahrnehmung bei Arthropoden. II. Das Richtungshören vonLocusta und Versuch einer Hörtheorie für Tympanalorgane vom Locustidentyp. Z Vergl Physiol 28:326–352

    Google Scholar 

  • Baker RR (1985) Magnetoreception by man and other primates. Topics Geobiol 5:537–561 (see also the rebuttals and critiques presented by several authors on pp 563–622 of the same volume)

    Google Scholar 

  • Bennet-Clark HC (1984) Insect hearing: acoustics and transduction. In: Lewis T (ed) Insect communication. Academic Press, London New York, pp 49–82

    Google Scholar 

  • Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Google Scholar 

  • Bohn H, Täuber U (1971) Beziehungen zwischen der Wirkung polarisierten Lichtes auf das Elektroretinogramm und der Ultrastruktur des Auges vonGerris lacustris. Z Vergl Physiol 72:32–53

    Google Scholar 

  • Brooke ML de (1981) Size as a factor influencing the ownership of copulation burrows by the ghost crab (Ocypode ceratophthalmus). Z Tierpsychol 55:63–78

    Google Scholar 

  • Chen HS, Rao CRN (1968) Polarization of light on reflection by some natural surfaces. Brit J Appl Phys, Ser 2, 1:1191–1200

    Google Scholar 

  • Creutzfeld OD (1981) Diversification and synthesis of sensory systems across the cortical link. In: Pompeiano O, Ajmone-Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior. Raven Press, New York, pp 153–165

    Google Scholar 

  • Delcomyn F (1981) Insect locomotion on land. In: Herreid CF, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York London, pp 103–125

    Google Scholar 

  • Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853

    Google Scholar 

  • Elliot-Smith C (1924) The evolution of man: essays. Oxford University Press, Oxford

    Google Scholar 

  • Fent K (1985) Himmelsorientierung bei der WüstenameiseCataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. Ph D thesis, University of Zürich

  • Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, Van Essen DC (1986) Mapping human visual cortex with positron emission tomography. Nature 323:806–809

    Google Scholar 

  • Frisch K von (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148

    Google Scholar 

  • Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, New York

    Google Scholar 

  • Gould JL (1982) The map sense of pigeons. Nature 296:205–211 (see also rebuttals and critiques by Wallraff HG, Benvenuti S, Papi F (1982), Nature 300:293–294).

    Google Scholar 

  • Greenspan BN (1980) Male size and reproductive success in the communal courtship system of the fiddler crabUca rapax. Anim Behav 28:387–392

    Google Scholar 

  • Hesse R (1901) Untersuchungen über die Organe der Lichtempfindung bei niederen Tieren. VII. Von den Arthropoden-Augen. Z Wiss Zool 70:347–473

    Google Scholar 

  • Hesse R (1908) Das Sehen der niederen Tiere. G. Fischer, Jena

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans R Soc Lond B 285:1–59

    Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 613–756

    Google Scholar 

  • Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68:102–106

    Google Scholar 

  • Kiepenheuer J (1984) The magnetic compass mechanism of birds and its possible association with the shifting course directions of migrants. Behav Ecol Sociobiol 14:81–99

    Google Scholar 

  • Kirschvink JL, Jones DS, Mac Fadden BJ (1985) Magnetite biomineralization and magnetoreception in organisms. A new biomagnetism. Plenum Press, New York London

    Google Scholar 

  • Labhart T (1985) Polarisationsempfindliche Interneurone im Sehsystem der Grille. Deutsche Neurobiologentagung, Abstracts, p 137

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Lewis B (1983) Directional cues for auditory localization. In: Lewis B (ed) Bioacoustics — a comparative approach. Academic Press, London New York, pp 233–257

    Google Scholar 

  • Menzel R (1979) Spectral sensitivity and color vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 503–580

    Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics — a comparative approach. Academic Press, London New York, pp 3–38

    Google Scholar 

  • Munk O (1970) On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Vidensk Medd Dan Naturhist Foren 133:85–120

    Google Scholar 

  • Rose D, Dobson VG (1985) Models of the visual cortex. John Wiley, Chichester, New York

    Google Scholar 

  • Rossel S, Wehner R (1982) The bee's map of the e-vector pattern in the sky. Proc Natl Acad Sci USA 79:4451–4455

    Google Scholar 

  • Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131

    Google Scholar 

  • Rossel S, Wehner R (1987) The bee's e-vector compass. In: Menzel R (ed) Honeybee neurobiology. Springer, New York Berlin, pp 76–93

    Google Scholar 

  • Schmidt JM, Smith JJB (1986) Correlations between body angles and substrate curvature in the parasitoid waspTrichogramma minutum: a possible mechanism of host radius measurement. J Exp Biol 125:271–285

    Google Scholar 

  • Schmitz H (1967) System der Philosophie. Bd 3: Der Raum. 1. Teil: Der leibliche Raum. H. Bouvier, Bonn

    Google Scholar 

  • Schuijf A, Buwalda RJA (1980) Underwater localization — a major problem in fish acoustics. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, New York Berlin Heidelberg, pp 43–77

    Google Scholar 

  • Schwind R (1978) Visual system ofNotonecta glauca: A neuron sensitive to movement in the binocular visual field. J Comp Physiol 123:315–328

    Google Scholar 

  • Schwind R (1980) Geometrical optics of theNotonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140:59–68

    Google Scholar 

  • Schwind R (1983) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer,Notonecta glauca. Cell Tissue Res 232:53–63

    Google Scholar 

  • Schwind R (1984) The plunge reaction of the backswimmerNotonecta glauca. J Comp Physiol A 155:319–321

    Google Scholar 

  • Searle J (1984) Minds, brains and science. The 1984 Reith lectures. British Broadcasting Corporation, London

    Google Scholar 

  • Stange G, Howard J (1979) An ocellar dorsal light response in a dragonfly. J Exp Biol 83:351–355

    Google Scholar 

  • Stebbins RC, Kalk M (1961) Observations on the natural history of the mud-skipper,Periophthalmus sobrinus. Copeia 61:18–27

    Google Scholar 

  • Stockhammer K (1959) Die Orientierung nach der Schwingungsrichtung linear polarisierten Lichtes und ihre sinnesphysiologischen Grundlagen. Ergeb Biol 21:23–56

    Google Scholar 

  • Taylor CP (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. I. Behavioural analysis. J Exp Biol 93:1–18

    Google Scholar 

  • Trujillo-Cenóz O, Bernard GD (1972) Some aspects of the retinal organization ofSympychus lineatus (Diptera, Dolichopodidae). J Ultrastruct Res 38:149–160

    Google Scholar 

  • Walcott C, Green RP (1974) Orientation of homing pigeons altered by change in the direction of an applied magnetic field. Science 184:180–182

    Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Hafner, New York

    Google Scholar 

  • Wehner R (1981) Spatial vision in arthropods. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. Springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132

    Google Scholar 

  • Wehner R (1983a) The perception of polarized light. Soc Exp Biol Symp 36:331–369

    Google Scholar 

  • Wehner R (1983b) Celestial and terrestrial navigation: human strategies — insect strategies. In: Huber F, Markl H (eds) Neuroethologie and behavioral physiology. Springer, Berlin Heidelberg New York, pp 366–381

    Google Scholar 

  • Wehner R, Räber F (1979) Visual spatial memory in desert ants,Cataglyphis bicolor (Hymenoptera, Formicidae). Experientia 35:1569–1571

    Google Scholar 

  • Wehner R, Rossel S (1985) The bee's celestial compass — a case study in behavioural neurobiology. Fortschr Zool 31:11–53

    Google Scholar 

  • Wehner R, Srinivasan MV (1984) The world as the insect sees it. In: Lewis T (ed) Insect communication. R Entomol Soc London. Academic Press, London, pp 29–47

    Google Scholar 

  • Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349

    Google Scholar 

  • Wiese K (1974) The mechanoreceptive system of prey localization inNotonecta. II. The principle of localization. J Comp Physiol 92:317–325

    Google Scholar 

  • Wilson M (1978) The functional organization of locust ocelli. J Comp Physiol 124:297–316

    Google Scholar 

  • Wiltschko W (1968) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rube cula). Z Tierpsychol 25:537–558

    Google Scholar 

  • Wiltschko W (1972) Magnetic compass of European robins. Science 176:62–64

    Google Scholar 

  • Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night migrating birds. J Comp Physiol 109:91–99

    Google Scholar 

  • Zeil J, Nalbach G, Nalbach HO (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wehner, R. ‘Matched filters’ — neural models of the external world. J. Comp. Physiol. 161, 511–531 (1987). https://doi.org/10.1007/BF00603659

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00603659

Keywords

Navigation