Skip to main content
Log in

Toward a quantitative theory of self-generated complexity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantities are defined operationally which qualify as measures of complexity of patterns arising in physical situations. Their main features, distinguishing them from previously used quantities, are the following: (1) they are measuretheoretic concepts, more closely related to Shannon entropy than to computational complexity; and (2) they are observables related to ensembles of patterns, not to individual patterns. Indeed, they are essentially Shannon information needed to specify not individual patterns, but either measure-theoretic or algebraic properties of ensembles of patterns arising ina priori translationally invariant situations. Numerical estimates of these complexities are given for several examples of patterns created by maps and by cellular automata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alekseev, V, M., and Yakobson, M. V. (1981).Physics Reports,75, 287.

    Google Scholar 

  • Allouche, J.-P., and Cosnard, M. (1984). Grenoble preprint.

  • Block, L., et al. (1980). Periodic points and topological entropy of 1-dimensional maps, inLecture Notes in Mathematics, No. 819, Springer, Berlin, 1980, p. 18.

    Google Scholar 

  • Chaitin, G. J. (1979). Toward a mathematical definition of ‘life’, inThe Maximum Entropy Principle, R. D. Levine and M. Tribus, eds., MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Christol, G., Kamae, T., Mendes France, M., and Rauzy, G. (1980).Bulletin Societé Mathematique France,108, 401.

    Google Scholar 

  • Collet, P., and Eckmann, J.-P. (1980).Iterated Maps on the Interval as Dynamical Systems, Birkhauser, Boston.

    Google Scholar 

  • Crutchfield, J. P., and Packard, N. H. (1983).Physica,7D, 201.

    Google Scholar 

  • Dias de Deus, J., Dilao, R., and Noronha da Costa, A. (1984). Lissabon preprint.

  • Eckmann, J. P., and Ruelle, D. (1985).Review of Modern Physics,57, 617.

    Google Scholar 

  • Feigenbaum, M. (1978).Journal of Statistical Physics,19, 25.

    Google Scholar 

  • Feigenbaum, M. (1979).Journal of Statistical Physics,21, 669.

    Google Scholar 

  • Grassberger, P. (1984).Physica,10D, 52.

    Google Scholar 

  • Grassberger, P., and Kantz, H. (1985).Physics Letters,113A, 235.

    Google Scholar 

  • Grossmann, S., and Thomae, S. (1977).Zeitschrift für Naturforschung,32a, 1353.

    Google Scholar 

  • Guckenheimer, J., and Holmes, P. (1983).Non-linear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York.

    Google Scholar 

  • Györgyi, G., and Szepfalusy, P. (1985).Physical Review A,31, 3477; and to be published.

    Google Scholar 

  • Hofstadter, D. R. (1979).Gödel, Escher, Bach, Vintage Books, New York.

    Google Scholar 

  • Hogg, T., and Huberman, B. A. (1985). Order, complexity, and disorder, Palo Alto preprint,

  • Hopcroft, J. E. and Ullman, J. D. (1979).Introduction to Automata Theory, Lanaguages, and Computation, Addison-Wesley.

  • Martin, O., Odlyzko, A., and Wolfram, S. (1984).Communication in Mathematical Physics,93, 219.

    Google Scholar 

  • Packard, N. (1983). Complexity of growing patterns in cellular automata, Institute of Advanced Study preprint.

  • Schuster, H. G. (1984).Deterministic Chaos, Physik-Verlag, Weinheim, West Germany.

    Google Scholar 

  • Shannon, C. E., and Weaver, W. (1949).The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Sinai, Ya. (1985).Commentarii Mathematici Helvetici,60, 173.

    Google Scholar 

  • Van Emden, M. H. (1975).An Analysis of Complexity, Mathematical Centre Tracts, Amsterdam.

    Google Scholar 

  • Wagoner, S. (1985). Is pi normal;,Mathematical Intelligencer,7, 65.

    Google Scholar 

  • Wolfram, S. (1983).Review of Modern Physics,55, 601 (1983).

    Google Scholar 

  • Wolfram, S. (1984a).Physica,10D, 1.

    Google Scholar 

  • Wolfram, S. (1984b).Communications in Mathematical Physics,96, 15.

    Google Scholar 

  • Wolfram, S. (1985). Random sequence generation by cellular automata, Institute for Advanced Study preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassberger, P. Toward a quantitative theory of self-generated complexity. Int J Theor Phys 25, 907–938 (1986). https://doi.org/10.1007/BF00668821

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00668821

Keywords

Navigation