Skip to main content
Log in

Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

Archaeocytes from the spongeEphydatia fluviatilis were dissociated and then isolated on Ficoll density gradients. Their aggregation and reconstitution processes were studied by transmission electron microscopy to determine their capabilities for differentiation.

Archaeocyte aggregates follow a well defined sequence of differentiation to generate the characteristic structures of a sponge. Pinacoderm is the first structure to be regenerated and appears progressively at the surface of the 12 h aggregates. Pinacocytes which have differentiated in archaeocyte aggregates are identical to native ones except that the nucleolus remains in most cells. The choanocytes appear only after 24 h by a two step process. First, small cells (choanoblasts) are formed from archaeocytes by mitosis. These cells then transform into fully differentiated choanocytes possessing collars and flagella. The early choanocyte chambers are small, irregular and randomly dispersed in the aggregates. Finally, collencytes and sclerocytes begin to appear just before the aggregates spread on the substrate.

The differentiation of a suspension of pure archaeocytes is a unique model system to study sponge cell differentiation and has allowed us to demonstrate that archaeocytes isolated from developed sponges maintain the capacity to differentiate even though this capacity is not usually expressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrell, I (1951) Observation on cell differentiation in sponges. Ark Zool Ser II 2:519–523

    Google Scholar 

  • Bagby RM (1972) Formation and differentiation of the upper pinacoderm in reaggregation masses of the spongeMicrociona prolifera (Ellis and Solander). J Exp Zool 180:217–244

    PubMed  Google Scholar 

  • Borojevic R, Levi C (1964) Etude au microscope électronique des cellules de l'épongeOphlitaspongia seriata (Grant) au cours de la réorganisation après dissociation. Z Zellforsch Mikrosk Anat 64:708–725

    PubMed  Google Scholar 

  • Borojevic R (1966) Etude expérimentale de la différenciation des cellules de l'éponge au cours de son développement. Dev Biol 14:130–153

    PubMed  Google Scholar 

  • Brien P (1932) Contribution à l'étude de la régénération naturelle chez les Spongillidae,Spongilla lacustris, Ephydatia fluviatilis. Arch Zool Exp Gén 74:461–506

    Google Scholar 

  • Brien P (1937) La réorganisation de l'éponge après dissociation par filtration et phénomènes d'involution chezEphydatia fluviatilis. Arch Biol 48:185–268

    Google Scholar 

  • Brien P, Meewis H (1938) Contribution à l'étude de l'embryogenèse des Spongillidae. Arch Biol 49:177–250

    Google Scholar 

  • Buscema M, Vyver G Van de (1979) Etude ultrastructurale de l'agrégation des cellules dissociées de l'épongeEphydatia fluviatilis. In: CNRS (ed) Biologie des Spongiaires, Paris. 291:225–232

  • De Sutter D, Buscema M (1977) Isolation of a highly pure archaeocyte fraction from the fresh-water spongeEphydatia fluviatilis. Wilhlem Roux's Arch. Entwicklungsmech Org 183:149–153

    Google Scholar 

  • De Sutter D, Van de Vyver G (1977) Aggregative properties of different cell types of the fresh-water spongeEphydatia fluviatilis isolated on Ficoll gradients. Wilhelm Roux's Arch Entwicklungsmech Org 181:151–161

    Google Scholar 

  • De Sutter D (1977) Propriétés de reconnaissance allogénique de l'éponge d'eau douceEphydatia fluviatilis étudiées sur des fractions cellulaires isolées en gradients. Thèse de doctorat, Fac Sci, ULB

  • Fauré-Fremiet E (1932) Morphogenèse expérimentale (reconstitution) chez Ficulina ficus. Arch Anat Micr 28:1–80

    Google Scholar 

  • Galtsoff PS (1925) Regeneration after dissociation (an experimental study on sponges). J Exp Zool 42:183–255

    Google Scholar 

  • Ganguly E (1960) The differentiating capacity of dissociated sponge cells. Wilhelm Roux's Arch Entwicklungsmech Org 152:22–34

    Google Scholar 

  • Glücksmann A (1951) Cell death in normal vertebrate ontogeny. Biol Rev 26:59–86

    Google Scholar 

  • Höhr D (1977) Differenzierungsvorgänge in der Keimenden Gemmula vonEphydatia fluviatilis. Wilhelm Roux's Arch Entwicklungsmech Org 182:329–346

    Google Scholar 

  • Hurlé JM, Lafarga M, Ojeda JL (1978) In vivo phagocytosis by developing myocardial cells: an ultrastructural study. J Cell Sci 33:363–385

    PubMed  Google Scholar 

  • Huxley JS (1921) Further studies on restitution-bodies and free tissue culture inSycon. Q J Microsc Sci 65:293–322

    Google Scholar 

  • John HA, Campo MS, MacKenzie AM, Kemp RB (1971) Role of different sponge cell types in species specific cell aggregation Nature 230:126–128

    PubMed  Google Scholar 

  • Meewis H (1939) Contribution à l'étude de l'embryogènese des Chalinidae:Haliclona limbata (Mont). Ann Soc R Zool Belg 70:201–243

    Google Scholar 

  • Müller K (1911) Versuche über die Regenerationsfähigkeit der Süßwasserschwämme. Zool Anz 37:83–88

    Google Scholar 

  • Rasmont R (1961) Une technique de culture des éponges d'eau douce en milieu contrôlé. Ann Soc R Zool Belg 91:147–156

    Google Scholar 

  • Reynolds E (1963) The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–213

    Article  PubMed  Google Scholar 

  • Silver J (1976) A study of ocular morphogenesis in the rat using (3H) thymidine autoradiography: evidence for thymidine recycling in the developing retina. Dev Biol 49:487–495

    PubMed  Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    PubMed  Google Scholar 

  • Van de Vyver G (1970) La non-confluence intraspécifique chez les spongiaires et la notion d'individu. Ann Embryol Morphol 3:251–262

    Google Scholar 

  • Van de Vyver G, Buscema M (1977) Phagocytic phenomena in different types of fresh-water sponge aggregates. In: JB Solomon and JD Horton (eds) Developmental immunobiology. Elsevier/North-Holland Biomedical Press Amsterdam, pp 3–8

    Google Scholar 

  • Wilson HV (1907) On some phenomena of coalescence and regeneration in sponges. J Exp Zool 5:245–258

    Google Scholar 

  • Wilson HV (1910) Development of sponges from dissociated cells. Bur Fish Bull 30:1–30

    Google Scholar 

  • Wilson HV, Penney JT (1930) The regeneration of sponges (Microciona) from dissociated cells. J Exp Zool 56:73–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buscema, M., De Sutter, D. & Van de Vyver, G. Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes. Wilhelm Roux' Archiv 188, 45–53 (1980). https://doi.org/10.1007/BF00848609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00848609

Key words

Navigation