Skip to main content
Log in

Enzymatic and nonenzymatic ADP-ribosylation of cysteine

  • Part VI: Derivation of Proteins with ADP-ribose, NAD and their Analogues
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mono-ADP-ribosylation is a protein modification that occurs at a number of different amino acids, dictated by the specificity of the individual ADP-ribosyltransferases. A specific cysteine in several guanine nucleotide-binding regulatory proteins is ADP-ribosylated by the bacterial protein pertussis toxin. Recent purification of an ADP-ribosylcysteine hydrolase and NAD:cysteine ADP-ribosyltransferase, and detection of ADP-ribose-cysteine linkages in tissue samples has raised hope that an endogenous regulatory cysteine-specific ADP-ribosylation pathway exists. A current goal is the identification of such a pathway for ADP-ribosylation of cysteine within animal cells. Interpretation of the data in this field has been complicated by recent reports that revealed several unforeseen chemical reactions of NAD and its metabolites with free cysteine and cysteine in proteins. This mini-review covers the latest understanding of the ADP-ribosylation reactions associated with cysteine, and provides a set of criteria for future research to establish positively the existence of an endogenous cysteine-specific mono-ADP-ribosyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rappuoli R, Pizza M: Structure and evolutionary aspects of ADP-ribosylating toxins. In: J.E. Alouf and J.H. Freer (eds). Sourcebook of Bacterial Protein Toxins. Academic Press, London, 1991, pp 1–21

    Google Scholar 

  2. Boquet P, Gill DM: Modulation of cell functions by ADP-ribosylating bacterial toxins. In: J.E. Alouf and J.H. Freer (eds). Sourcebook of Bacterial Protein Toxins. Academic Press, London, 1991, pp 23–44

    Google Scholar 

  3. Moss J, Vaughan M: ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enztmol 61: 303–379, 1988

    Google Scholar 

  4. Williamson K, Moss J: Mono-ADP-ribosyltransferases and ADP-ribosylarginine hydrolases: a mono-ADP-ribosylation cycle in animal cells. In: J. Moss and M. Vaughan (eds). ADP-ribosylating Toxins and G Proteins: Insights into Signal Transduction. American Society for Microbiology, Washington D.C., 1990, pp 493–510

    Google Scholar 

  5. Lowery RG, Ludden PW: Purification and properties of dinitrogenase reductase ADP-ribosyltransferase from the photosynthetic bacteriumRhodospirillum rubrum. J Biol Chem 263: 16714–16719, 1988

    PubMed  Google Scholar 

  6. Lee H, Iglewski WJ: Cellular ADP-ribosyltransferase with the same mechanism of action as diphtheria toxin andPseudomonas toxin. A. Proc Natl Acad Sci USA 81: 2703–2707, 1984

    PubMed  Google Scholar 

  7. Maehama T, Takahashi K, Ohoka Y et al: Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins. J Biol Chem 266: 10062–10065, 1991

    PubMed  Google Scholar 

  8. Moss J, Stanley SJ, Nightingale MS et al: Molecular and immunological characterization of ADP-ribosylarginine hydrolases. J Biol Chem 267: 10481–10488, 1992

    PubMed  Google Scholar 

  9. Zolkiewska A, Nightingale MS, Moss J: Molecular characterization of NAD: arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci USA 89: 11352–11356, 1992

    PubMed  Google Scholar 

  10. Frei B, Richter C: Mono(ADP-ribosylation) in rat liver mitochondria. Biochem 27: 529–535, 1988

    Google Scholar 

  11. Tanuma S, Kawashima K, Endo H: Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem 263: 5485–5489, 1988

    PubMed  Google Scholar 

  12. Kots AY, Skurat AV, Bulargina TV: Study of substrates of ADP-ribosyltransferase from human erythrocytes. Biochem (New York) 55 873–878, 1990

    Google Scholar 

  13. Jacobson MK, Loflin PT, Aboul-Ela N, Mingmuang M, Moss J, Jacobson EL: Modification of plasma membrane protein cysteine residues by ADP-ribosein vivo. J Biol Chem 265: 10825–10828, 1990

    PubMed  Google Scholar 

  14. Tanuma S, Kawashima K, Endo H: An NAD:cysteine ADP-ribosyltransferase is present in human erythrocytes. J Biochem 101: 821–824, 1987

    PubMed  Google Scholar 

  15. Tanuma S, Endo H: Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett 261: 381–384, 1990

    PubMed  Google Scholar 

  16. McDonald LJ, Wainschel LA, Oppenheimer NJ, Moss J: Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochem 31: 11881–11887, 1992

    Google Scholar 

  17. McDonald LJ, Moss J: Nitric oxide-independent, thiol-associated ADP-ribosylation inactivates aldehyde dehydrogenase. J Biol Chem 268: 17878–17882, 1993

    PubMed  Google Scholar 

  18. McDonald LJ, Moss J: Stimulation by Nitric Oxide of a Novel Linkage of NAD to Glyceraldehyde 3-Phosphate Dehydrogenase. Proc. Natl. Acad. Sci. USA 90: 6238–6241, 1993

    PubMed  Google Scholar 

  19. Lobban MD, van Heyningen S: Thiol reagents are substrates for the ADP-ribosyltransferase activity of pertussis toxin. FEBS Lett 233: 229–232, 1988

    PubMed  Google Scholar 

  20. Schubert MP: Compounds of thiol acids with aldehydes. J Biol Chem 114: 341–350, 1936

    Google Scholar 

  21. Schubert MP: The combination of cysteine with sugars. J Biol Chem 130: 601–603, 1939

    Google Scholar 

  22. Ratner S, Clarke HT: The action of formaldehyde upon cysteine. J Am Chem Soc 59: 200–206, 1947

    Google Scholar 

  23. Horton D, Hutson D: Developments in the chemistry of thio sugars. Adv Carbohydrate Chem 18: 123–199, 1963

    Google Scholar 

  24. Hsia JA, Tsai S-C, Adamik R, Yost DA, Hewlett EL, Moss J: Amino acidspecific ADP-ribosylation: sensitivity to hydroxylamine of [cysteine(ADP-ribose)]protein and [arginine(ADP-ribose)]protein linkages. J Biol Chem 260: 16187–16191, 1985

    PubMed  Google Scholar 

  25. Payne DM, Jacobson EL, Moss J, Jacobson MK: Modification of proteins by mono(ADP-ribosylation)in vivo. Biochem 24, 7540–7549, 1985

    Google Scholar 

  26. Cervantes-Laurean D, Minter DE, Jacobson EL, Jacobson MK: Protein glycation by ADP-ribose: studies of model conjugates. Biochemistry 32: 1528–1534, 1993

    PubMed  Google Scholar 

  27. Olson LC: Pertussis. Medicine 54: 427–469, 1975

    PubMed  Google Scholar 

  28. West RE Jr., Moss J, Vaughan M, Lui T, Lui T-Y: Pertussis toxin-catalyzed ADP-ribosylation of transducin: cysteine 347 is the ADP-ribose acceptor site. J Biol Chem 260: 14428–14430, 1985

    PubMed  Google Scholar 

  29. Medynski DC, Sullivan K, Smith D et al: Amino acid sequence of the α subunit of transducin deduced from the cDNA sequence. Proc Natl Acad Sci USA 82: 4311–4315, 1985

    PubMed  Google Scholar 

  30. Van Meurs KP, Angus CW, Lavu S et al: Deduced amino acid sequence of bovine retinal G:similarities to other guanine nucleotide-binding proteins. Proc Natl Acad Sci USA 84: 3107–3111, 1987

    PubMed  Google Scholar 

  31. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y: Presence of three distinct molecular species of Gi protein α subunit: structure of rat cDNAs and genomic DNAs. J Biol Chem 263: 6656–6664, 1988

    PubMed  Google Scholar 

  32. Avigan J, Murtagh JJ Jr., StevensLA, Angus CW, Moss J, Vaughan M: Pertussis toxin-catalyzed ADP-ribosylation of G with mutation at the carboxyl terminus. Biochem 31: 7736–7740, 1992

    Google Scholar 

  33. Freismuth M, Gilman AG: Mutations of G designed to alter the reactivity of the protein with bacterial toxins: substitutions at Arg187 result in loss of GTPase activity. J Biol Chem 264: 21907–21914, 1989

    PubMed  Google Scholar 

  34. Graf R, Codina J, Bimbaumer L: Peptide inhibitors of ADP-ribosylation by pertussis toxin are substrates with affinities comparable to those of the trimeric GTP-binding proteins. Mol Pharm 42: 760–764, 1992

    Google Scholar 

  35. Kun E, Zimber PH, Chang ACY, Puschendorf B, Grunicke H: Macromolecular enzymatic product of NAD+ in liver mitochondria. Proc Natl Acad Sci USA 72: 1436–1440, 1975

    PubMed  Google Scholar 

  36. Bredehorst R, Wielckens K, Gartemann A, Lengyel H, Klapproth K Hilz H: Two different types of bonds linking single ADP-ribose residues covalently to proteins: quantification in eukaryotic cells. Eur J Biochem 92: 129–135, 1978

    PubMed  Google Scholar 

  37. Krantz MJ, Lee YC: Quantitative hydrolysis of thioglycosides. Anal Biochem 71: 318–321, 1976

    PubMed  Google Scholar 

  38. Meyer T, Koch R, Fanick W, Hilz H: ADP-ribosyl proteins formed by pertussis toxin are specifically cleaved by mercury ions. Biol Chem Hoppe-Seyler 369: 579–583, 1988

    PubMed  Google Scholar 

  39. Tanuma S, Endo H: Mono(ADP-ribosyl)ation of Gi by eukaryotic cysteinespecific mono(ADP-ribose)transferase attenuates inhibition of adenylate cyclase by epinephrine. Biochem Biophys Acta 1010: 246–249, 1989

    PubMed  Google Scholar 

  40. Kun E, Chang ACY, Sharma ML, Ferro AM, Nitecki D: Covalent modification of proteins by metabolites of NAD+. Proc Natl Acad Sci USA 73, 3131–3135, 1976

    PubMed  Google Scholar 

  41. Tanaka Y, Yoshihara K, Kamiya T: Enzymic and nonenzymic mono ADP-ribosylation of proteins in skeletal muscle. Biochem Biophys Res Commun 163: 1063–1070, 1989

    PubMed  Google Scholar 

  42. Just I, Koch G, Aktories K: Endogenous ADP-ribosylation of actin. Naunyn-Schmiedeberg's Arch Pharmacol 345: R19, 1992 (abstract)

    Google Scholar 

  43. Saigal D, Cunningham SJ, Farrés J, Weiner H: Molecular cloning of the mitochondrial aldehyde dehydrogenase gene ofSaccharomyces cerevisiae by genetic complementation. J Bacteriol 173: 3199–3208, 1991

    PubMed  Google Scholar 

  44. Nathan C: Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051–3064, 1992

    PubMed  Google Scholar 

  45. Lowenstein CJ, Snyder SH: Nitric oxide, a novel biologic messenger. Cell 70: 705–707, 1992

    PubMed  Google Scholar 

  46. Stamler JS, Singel DJ, Loscalzo J: Biochemistry of nitric oxide and its redox-activated froms. Science 258: 1898–1902, 1992

    PubMed  Google Scholar 

  47. Kots, AY, Skurat AV, Sergienko EA, Bulargina TV, Severin ES: Nitroprusside stimulates the cysteine-specific mono(ADP-ribosylation) of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. FEBS Lett 300: 9–12, 1992

    PubMed  Google Scholar 

  48. Dimmeler S, Lottspeich F, Brüne B: Nitric oxide causes, ADP-ribosylation and inhibition of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 267: 16771–16774, 1992

    PubMed  Google Scholar 

  49. Zhang J, Snyder SH: Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 89: 9382–9385, 1992

    PubMed  Google Scholar 

  50. Molina y Vedia L, McDonald B, Reep B, Brüne B, Di Silvio M, Billiar TR, Lapetina EG: Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. J Biol Chem 267: 24929–24932, 1992

    PubMed  Google Scholar 

  51. Clancy RM, Leszczynska-Piziak J, Abramson SB: Nitric oxide sumulates ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun 191: 847–852, 1993

    PubMed  Google Scholar 

  52. Ehret-Hilberer S, Nullans G, Aunis D, Virmaux N: Mono ADP-ribosylation of transducin catalyzed by rod outer segment extract. FEBS Lett 309: 394–398, 1992

    PubMed  Google Scholar 

  53. Pozdnyakov N, Lloyd A, Reddy VN, Sitaramayya A: nitric oxide-regulated endogenous ADP-ribosylation of rod outer segment proteins. Biochem Biophys Res Commun 192: 610–615, 1993

    PubMed  Google Scholar 

  54. Dimmeler S, Brüne B: Characterization of a nitric-oxide-catalyzed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 210: 305–310, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, L.J., Moss, J. Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol Cell Biochem 138, 221–226 (1994). https://doi.org/10.1007/BF00928465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928465

Key words

Navigation