Skip to main content
Log in

Measuring fitness and intergenic interactions: The evolution of resistance to diazinon inLucilia cuprina

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Resistance at the diazinon-resistance locus (Rop-1) is recessive with respect to fitness. Selection initially occurs at concentrations lower than those required to controlLucilia cuprina. The presence of theRop-1 allele initially disrupted development so that in the absence of diazinon, carriers were at a relative selective disadvantage. Continued use of the chemical, subsequent to resistance evolving, selected a modifier to ameliorate this effect. Modified resistant phenotypes show similar developmental stability and relative fitness to susceptible individuals. Frequency-dependent interactions are observed between resistant and susceptible phenotypes of theRop-1 locus. The interactions are determined by the concentration of diazinon and range from competitive to facilitative. The results are discussed in the context of the contribution insecticide resistance systems can make to the study of general evolutionary phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedi, Z.H. & A.W.A. Brown, 1960. Development and reversion of DDT-resistance in Aedes aegypti. Can. J. Genet. Cytol. 2: 252–261.

    Google Scholar 

  • Artavanis-Tsakonas, S., 1988. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends in Genetics 4: 95–101.

    PubMed  Google Scholar 

  • Ayala, F.J. & C.A. Campbell, 1974. Frequency-dependent selection. Ann. Rev. Ecol. System. 5: 115–138.

    Google Scholar 

  • Castro, J.A., L.M. Botella & J.L. Mensua, 1986. Effect of conditioned media on three genotypes of Drosophila melanogaster: physical, chemical and biological aspects. Arch. Insect. Biochem. Physiol. 3: 485–497.

    Google Scholar 

  • Clarke, B., 1975. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics 79: 101–113.

    PubMed  Google Scholar 

  • Clarke, B.C., 1979. The evolution of genetic diversity. Proc. Roy. Soc. Lond. B. 205: 453–474.

    Google Scholar 

  • Clarke, G.M. & J.A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.

    Google Scholar 

  • Clarke, G.M. & L.J. McKenzie, 1992. Fluctuating asymmetry as a quality control indicator for insect mass rearing processes. J. Econ. Entomol. (In press).

  • Clarke, G.M., B.P. Oldroyd & P. Hunt, 1992. The genetic basis of developmental stability in Apis mellifera: heterozygosity versus genic balance. Evolution. 46: 753–762.

    Google Scholar 

  • Crow, J.F., 1957. Genetics of insecticide resistance to chemicals. Ann. Rev. Entomol. 2: 227–246.

    Google Scholar 

  • Daly, J.C., J.H. Fisk & N.W. Forrester, 1988. Selective mortality in field trials between strains of Heliothis armigera (Lepidoptera: Nocturidae) resistant and susceptible to pyrethroids: functional dominance of resistance and age class. J. Econ. Entomol. 81: 1000–1007.

    Google Scholar 

  • Davies, A.G., P. Batterham & J.A. McKenzie, 1992. Fatal association between dieldrin-resistant and susceptible Australian sheep blowflies, Lucilia cuprina. Proc. Roy. Soc. Lond. B. 247: 125–129.

    Google Scholar 

  • Denholm, I. & M.W. Rowland, 1992. Tactics for managing pesticide resistance in arthropods. Ann. Rev. Entomol. 37: 91–112.

    Google Scholar 

  • Georghiou, G.P., 1972. The evolution of resistance to pesticides. Ann. Rev. Ecol. System. 3: 133–168.

    Google Scholar 

  • Georghiou, G.P. & C.E. Taylor, 1977. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653–658.

    PubMed  Google Scholar 

  • Haj-Ahmed, Y. & D.A. Hickey, 1982. A molecular explanation of frequency-dependent selection in Drosophila. Nature 299: 350–352.

    PubMed  Google Scholar 

  • Hoffmann, A.A. & P.A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford University Press, Oxford.

    Google Scholar 

  • Houpt, D.R., J.C. Pursey & R.A. Morton, 1988. Genes controling malathion resistance in a laboratory-selected population of Drosophila melanogaster. Genome 30: 844–853.

    PubMed  Google Scholar 

  • Hughes, P.B. & A.L. Devonshire, 1982. The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 18: 289–297.

    Google Scholar 

  • Hughes, P.B. & J.A. McKenzie, 1987. Insecticide resistance in the Australian sheep blowfly, Lucilia cuprina: speculation, science and strategies, pp. 162–177. In: Combating resistance to Xenobiotics. Biological and chemical approaches, edited by M.G. Ford, D.W. Holloman, B.P.S. Khambay and R.M. Sawicki, Ellis Horwood, Chichester.

    Google Scholar 

  • Hughes, P.B., P.E. Green & K.G. Reichmann, 1984. Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Entomol. 77: 1400–1404.

    PubMed  Google Scholar 

  • Kojima, K. & S.L. Huang, 1972. Effects of population density on frequency-dependent selection in the esterase-6 locus of Drosophila melanogaster. Evolution 26: 313–321.

    Google Scholar 

  • Leary, R.F. & F.W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress: implications for conservation biology. Trends Ecol. Evol. 4: 214–217.

    Google Scholar 

  • Lewontin, R.C., 1991. Twenty-five years ago in Genetics: electrophoresis in the development of evolutionary genetics: milestone or millstone? Genetics 128: 657–662.

    PubMed  Google Scholar 

  • Mallet, J., 1989. The evolution of insecticide resistance: have the insects won? Trends Ecol. Evol. 4: 336–340.

    Google Scholar 

  • Markow, T.A. & J.P. Ricker, 1991. Developmental stability in hybrids between the sibling species pair, Drosophila melanogaster and Drosophila simulans. Genetica 84: 115–121.

    PubMed  Google Scholar 

  • Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Lande, D. Raup & L. Wolpert, 1985. Developmental constraints and evolution. Quart. Rev. Biol. 60: 266–287.

    Google Scholar 

  • McKenzie, J.A., 1985. Genetics of resistance to chemotherapeutic agents, pp. 89–95. In: Resistance in nematodes to anthelmintic drugs, edited by N. Anderson and P.J. Waller, CSIRO Div. Animal Health and Australian Wool Corporation, Sydney.

    Google Scholar 

  • McKenzie, J.A., 1987. Insecticide resistance in the Australian sheep blowfly-messages for pesticide usage. Chem. Ind. 8: 266–269.

    Google Scholar 

  • McKenzie, J.A. & G.M. Clarke, 1988. Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blow-fly, Lucilia cuprina. Genetics 120: 213–220.

    Google Scholar 

  • McKenzie, J.A. & A.Y. Game, 1987. Diazinon resistance in Lucilia cuprina; mapping of a fitness modifier. Heredity 59: 381–391.

    Google Scholar 

  • McKenzie, J.A. & J.C. Fegent, 1988. Interaction between genotypes at the diazinon-resistance locus of the Australian sheep blowfly, Lucilia cuprina. Facilitation of development of susceptible genotypes. Evolution 42: 1159–1165.

    Google Scholar 

  • McKenzie, J.A. & M.J. Whitten, 1982. Selection for resistance in the Australian sheep blowfly, Lucilia cuprina. Experientia 38: 84–85.

    PubMed  Google Scholar 

  • McKenzie, J.A., P. Batterham & L. Baker, 1990. Fitness and asymmetry modification as an evolutionary process. A study in the Australian sheep blowfly, Lucilia cuprina and Drosophila melanogaster, pp. 57–73. In: Ecological and evolutionary genetics of Drosophila, edited by J.S.F. Barker, W.T. Starmer and R.J. MacIntyre, Plenum Press, New York.

    Google Scholar 

  • McKenzie, J.A., J.M. Dearn & M.J. Whitten, 1980. Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 85–95.

    PubMed  Google Scholar 

  • McKenzie, J.A., J.C. Fegent & G. Weller, 1986. Frequency-dependent selection at the diazinon resistance locus of the Australian sheep blowfly, Lucilia cuprina. Heredity 56: 373–380.

    Google Scholar 

  • McKenzie, J.A., A.G. Parker, & J.L. Yen, 1992. Polygenic and single gene responses to selection for resistance to diazinon in Lucilia cuprina. Genetics 130: 613–620.

    PubMed  Google Scholar 

  • McKenzie, J.A., M.J. Whitten & M.A. Adena, 1982. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity 49: 1–9.

    Google Scholar 

  • Muggleton, J., 1986. Selection for malathion resistance on Oryzaephilus surinamensis (L). (Coleoptera: Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance. Bull. Ent. Res. 76: 469–480.

    Google Scholar 

  • National Research Council, 1986. Pesticide resistance: strategies and tactics for management, National Academy Press, Washington.

    Google Scholar 

  • Palmer, A.R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. System. 17: 391–421.

    Google Scholar 

  • Parker, A.G., R.J. Russell, A.C. Delves & J.G. Oakeshott, 1991. Biochemistry and physiology of esterases in organophosphate-susceptible and-resistant strains of the Australian sheep blowfly, Lucilia cuprina. Pest. Biochem. Physiol. 41: 305–318.

    Google Scholar 

  • Parsons, P.A., 1983. The evolutionary biology of colonizing species, Cambridge University Press, Cambridge.

    Google Scholar 

  • Parsons, P.A., 1990. Fluctuating asymmetry: an epigenetic measure of stress. Biol. Rev. 65: 131–145.

    PubMed  Google Scholar 

  • Parsons, P.A., 1991: Evolutionary rates: stress and species boundaries. Ann. Rev. Ecol. System. 22: 1–18.

    Google Scholar 

  • Raftos, D.A., 1986. The biochemical basis of malathion resistance in the Australian sheep blowfly, Lucilia cuprina. Pestic. Biochem. Physiol. 26: 302–309.

    Google Scholar 

  • Raftos, D.A. & P.B. Hughes, 1986. Genetic basis of a specific resistance to malathion in the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae). J. Econ. Ent. 79: 553–557.

    Google Scholar 

  • Roush, R.T., 1993. Absence of coadaptation of fitness with DDT-resistance in Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. (In press).

  • Roush, R.T. & J.C. Daly, 1990. The role of population genetics in resistance research and management, pp. 97–152. In: Pesticide resistance in arthropods, edited by R.T. Roush and B.E. Tabashnik, Chapman and Hall, New York.

    Google Scholar 

  • Roush, R.T. & J.A. McKenzie, 1987. Ecological genetics of insecticide and acaricide resistance. Ann. Rev. Ent. 32: 361–380.

    Google Scholar 

  • Roush, R.T. & B.E. Tabashnik (editors), 1990. Pesticide resistance in arthropods, Chapman and Hall, New York.

    Google Scholar 

  • Russell, R.J., M.M. Dumancic, G.G. Foster, G.L. Weller, M.J. Healy & J.G. Oakeshott, 1990. Insecticide resistance as a model system for studying molecular evolution, pp. 293–314. In: Ecological and evolutionary genetics of Drosophila, edited by J.S.F. Barker, W.T. Starmer and R.J. MacIntyre, Plenum Press, New York.

    Google Scholar 

  • Scharloo, W., 1991. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. System. 22: 65–93.

    Google Scholar 

  • Simpson, P., 1990. Notch and the choice of cell fate in Drosophila neuroepithelium. Trends in Genetics 6: 343–345.

    PubMed  Google Scholar 

  • Singh, R.S. & R.A. Morton, 1981. Selection for malathion-resistance in Drosophila melanogaster. Can. J. Genet. Cytol. 23: 355–369.

    PubMed  Google Scholar 

  • Taylor, C.E. & G.P. Georghiou, 1979. Suppression of insecticide resistance by alteration of gene dominance and migration. J. Econ. Entomol. 72: 105–109.

    Google Scholar 

  • Templeton, A.R., H. Hollocher, S. Lawler & J.S. Johnston, 1990. The ecological genetics of abnormal abdomen in Drosophila mercatorium, pp. 17–35. In: Ecological and evolutionary genetics of Drosophila, edited by J.S.F. Barker, W.T. Starmer and R.J. MacIntyre, Plenum Press, New York.

    Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Google Scholar 

  • Wallace, B., 1975. Hard and soft selection re-visited. Evolution 29: 465–473.

    Google Scholar 

  • Whitten, M.J. & J.A. McKenzie, 1982. The genetic basis for pesticide resistance, pp. 1–16. In: Proceedings 3rd Australasian conference of grassland invertebrates, edited by K.E. Lee, South Australian Govt. Printer, Adelaide.

    Google Scholar 

  • Whitten, M.J., J.M. Dearn & J.A. McKenzie, 1980. Field studies on insecticide resistance in the Australian sheep blowfly, Lucilia cuprina. Aust. J. Biol. Sci. 33: 725–735.

    Google Scholar 

  • Wood, R.J. & J.A. Bishop, 1981. Insecticide resistance: populations and evolution, pp. 97–127. In: Genetic consequences of man made change, edited by J.A. Bishop and L.M. Cook, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenzie, J.A. Measuring fitness and intergenic interactions: The evolution of resistance to diazinon inLucilia cuprina . Genetica 90, 227–237 (1993). https://doi.org/10.1007/BF01435042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01435042

Key words

Navigation