Skip to main content
Log in

Coadaptation ofDrosophila and yeasts in their natural habitat

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The mutualistic interactions of cactophilicDrosophila and their associated yeasts in the Sonoran Desert are studied as a system which has evolved within the framework of their host cactus stem chemistry. Because theDrosophila-yeast system is saphrophytic, their responses are not thought to directly influence the evolution of the host. Host cactus stem chemistry appears to play an important role in determining where cactophilicDrosophila breed and feed. Several chemicals have been identified as being important. These include sterols and alkaloids of senita as well as fatty acids and sterol diols of agria and organpipe cactus. Cactus chemistry appears to have a limited role in directly determining the distribution of cactus-specific yeasts. Those effects which are known are due to unusual lipids of organpipe cactus and triterpene glycosides of agria and organpipe cactus.Drosophilayeast interactions are viewed as mutualistic and can take the form of (1) benefits to theDrosophila by either direct nutritional gains or by detoxification of harmful chemicals produced during decay of the host stem tissue and (2) benefits to the yeast in the form of increased likelihood of transmission to new habitats. Experiments on yeast-yeast interactions in decaying agria cactus provide evidence that the yeast community is coadapted. This coadaptation among yeasts occurs in two manners: (1) mutualistic increases in growth rates (which are independent of the presence ofDrosophila larvae) and (2) stabilizing competitive interactions when growth reaches carrying capacity. This latter form is dependent on larval activity and results in benefits to the larvae present. In this sense, the coadapted yeast community is probably also coadapted with respect to itsDrosophila vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addicott, J.F. 1979. A multispecies aphid-ant association: Density dependence and species-specific effects.Can. J. Zool. 55:558–569.

    Google Scholar 

  • Ali, A.M.M., andEl-helw, M.R. 1974. Differences in the yeast preferred byDrosophila melanogaster andD. simulans.Egypt. J. Genet. Cytol. 3:204–210.

    Google Scholar 

  • Argues, L.V., andDuarte, R.G. 1980. Effect of ethanol and isopropanol on the activity of alcohol dehydrogenase, viability and life-span inDrosophila melanogaster andD. funebris.Experientia 36:828–830.

    Google Scholar 

  • Barker, J.S.F., Toll, G.L., East, P.D., Miranda, M., andPhaff, H.J. 1983. Heterogenity of the yeast flora in the breeding sites of cactophilicDrosophila.Can. J. Microbiol. 29:6–14.

    Google Scholar 

  • Batterham, P., Starmer, W.T., andSullivan, D.T. 1982. Biochemical genetics of the alcohol longevity response ofDrosophila mojavensis, pp. 307–321,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Brown, S.D., Hopkins, J.E., Massingill, J.L., Jr., andReinecke, M.G. 1972. The isolation, structure, synthesis, and absolute configuration of the cactus alkaloid gigantine.J. Org. Chem. 37:1828–1828.

    Google Scholar 

  • Campbell, C.E., andKircher, H.W. 1980. Senita cactus: A plant with interrupted sterol biosynthetic pathways.Phytochemistry 19:2777–2779.

    Google Scholar 

  • Cooper, D.M. 1959. Food preferences of larvae and adultDrosophila.Evolution 14:41–55.

    Google Scholar 

  • Daggard, G.E. 1981. Alcohol dehydrogenase, aldehyde oxidase, and alcohol utilization inDrosophila melanogaster, D. simulans, D. immigrans andD. busckii, in J.R. Gibson and J.G. Oakeshott (eds.). Genetic Studies ofDrosophila Populations. Proceedings of the Kioloa Conference. Australian National University, Canberra.

    Google Scholar 

  • David, J.R., andBocquet, C. 1975. Compared toxicities of different alcohols for twoDrosophila sibling species:D. melanogaster andD. simulans Comp.Biochem. Physiol. 54C:71–74.

    Google Scholar 

  • Djerassi, C., Brewer, H.W., Clark, C., andDurham, L.J. 1962. Alkaloid studies-XXXVII. Pilocereine—a trimeric cactus alkaloid.J. Am. Chem. Soc. 79:2203–2210.

    Google Scholar 

  • Fogleman, J.C. 1982. The role of volatiles in the ecology of cactophilicDrosophila, pp. 191–206,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Fogleman, J.C., andKircher, H.W. 1983. Senita alkaloids: No inhibition of sterol biosynthesis in yeasts or cacti.J. Nat. Prod. 46:279–282.

    Google Scholar 

  • Fogleman, J.C., andStarmer, W.T. 1985. Analysis of the community structure of yeasts associated with decaying stems of cactus. IIIStenocereus thurberi.Microb. Ecol. 11:165–173.

    Google Scholar 

  • Fogleman, J.C., Starmer, W.T. andHeed, W.B. 1981. Larval selectivity for yeast species byDrosophila mojavensis in larval substrates.Proc. Natl. Acad. Sci. U.S.A. 78(7):4435–4439.

    Google Scholar 

  • Fogleman, J.C., Heed, W.B., andKircher, H.W. 1982.Drosophila mettleri and senita cactus alkaloids: Fitness measurements and their ecological significance.Comp. Biochem. Physiol. 71A:413–417.

    Google Scholar 

  • Fogleman, J.C., Duperret, S.M., andKircher, H.W. 1986. The role of phytosterols in host plant utilization by cactophilicDrosophila.Lipids 21:92–96.

    Google Scholar 

  • Futuyma, D.J. 1983. Evolutionary interactions among herbivorous insects and plants, pp. 207–231,in D.J. Futuyma and M. Slatkin (eds.). Coevolution. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Gibson, A.C. 1982. Phylogenetic relationships of Pachycereeae, pp. 3–13,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model Systems. Academic Press, Sydney.

    Google Scholar 

  • Gibson, A.C. andHorak, K.E. 1978. Systematic anatomy and phylogeny of Mexican columnar cacti.Ann. M. Bot. Gard. 65:999–1057.

    Google Scholar 

  • Gilbert, D.G. 1980. Dispersal of yeasts and bacteria byDrosophila in a temperate forest.Oecologia 46:135–137.

    Google Scholar 

  • Heed, W.B. 1978. Ecology and genetics of Sonoran DesertDrosophila, pp. 109–126,in P.F. Brussard (ed.). Ecological Genetics: The Interface. Springer-Verlag, New York.

    Google Scholar 

  • Heed, W.B. 1982. The origin ofDrosophila in the Sonoran Desert, pp. 65–80,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Heed, W.B., andKircher, H.W. 1965. Unique sterol in the ecology and nutrition ofDrosophila pachea.Science 149:758–761.

    Google Scholar 

  • Heed, W.B., andMangan, R.L. 1985. Community ecology of the Sonoran DesertDrosophila, pp. 311–345,in M. Ashburner, H.L. Carson, and J.N. Thompson, Jr., (eds.). The Genetics and Biology ofDrosophila. Vol. 3e. Academic Press, London.

    Google Scholar 

  • Heed, W.B., Starmer, W.T., Miranda, M., Miller, M.W., andPhaff, H.J. 1976. An analysis of the yeast flora associated with cactiphilicDrosophila and their host plants in the Sonoran Desert and its relation to temperate and tropical associations.Ecology 57:151–160.

    Google Scholar 

  • Heithaus, E.R., Culver, D.C., andBeattie, A.J. 1980. Models of some ant-plant mutualisms.Am. Nat., 116:347–361.

    Google Scholar 

  • Henry, D.P., Thompson, R.H., Sizemore, D.J., andO'leary, J.A. 1976. Study ofCandida ingens grown on the supernatant derived from the anaerobic fermentation of monogastic animal wastes.Appl. Environ. Microbiol. 31:813–818.

    Google Scholar 

  • Holzschu, D.L., Phaff, H.J., Tredick, J., andHedgecock, D. 1983.Pichia pseudocactophila, a new species of yeast occurring in necrotic tissue of columnar cacti in the North American Sonoran Desert.Can. J. Microbiol. 29:1314–1322.

    Google Scholar 

  • Janzen, D.H. 1980. When is it convolution?Evolution 34:611–612.

    Google Scholar 

  • Kircher, H.W. 1977. Triterpene glycosides and quertaroic acid in organ pipe cactus.Phytochemistry 16:1078–1080.

    Google Scholar 

  • Kircher, H.W. 1980. Triterpenes in organ pipe cactus.Phytochemistry 19:2707–2712.

    Google Scholar 

  • Kircher, H.W. 1982. Chemical composition of cacti and its relationship to Sonoran DesertDrosophila, pp. 143–158,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Kircher, H.W., andBird, H.L. 1982. Five 3β, 6α-dihydroxysterols in organ pipe cactus.Phytochemistry 21:1705–1710.

    Google Scholar 

  • Kircher, H.W., Heed, W.B., Russel, J.S., andGrove, J. 1967. Senita cactus alkaloids: Their significance to Sonoran Desert ecology.J. Insect Physiol 13:1869–1874.

    Google Scholar 

  • Levin, D.A. 1973. The role of trichomes in plant defense.Q. Rev. Biol. 48:3–15.

    Google Scholar 

  • Lindsay, S.L. 1958. Food preferences ofDrosophila larvae.Am. Nat. 42:279–285.

    Google Scholar 

  • May, R.M. 1974. Stability and Complexity in Model Ecosystems. Princeton, New Jersey. 265 pp.

    Google Scholar 

  • Miller, M.W., Phaff, H.J., Miranda, M., Heed, W.B., andStarmer, W.T. 1976.Torulopsis sonorensis, a new species of the genusTorulopsis.Int. J. Syst. Bacterial. 26:88–91.

    Google Scholar 

  • Miranda, M., Holzshu, D.L., Phaff, H.J., andStarmer, W.T. 1982.Pichia mexicana, a new heterothallic yeast from cereoid cacti in the North American Sonoran Desert.Int. J. Syst. Bacterial. 32:101–107.

    Google Scholar 

  • Phaff, H.J., Miller, M.W., Miranda, M., Heed, W.B., andStarmer, W.T. 1974.Cryptococcus cereanus, a new species of the genusCryptococcus.Int. J. Syst. Bacteriol. 24:486–490.

    Google Scholar 

  • Phaff, H.J., Starmer, W.T., Miranda, M., andMiller, M.W. 1978.Pichia heedii, a new species of yeast indigenous to necrotic cacti in the North American Sonoran desert.Int. J. Syst. Bacteriol. 28:326–331.

    Google Scholar 

  • Phaff, H.J., Starmer, W.T., Miranda, M., andMiller, M.W. 1980.Candida mucilagina, a new species of yeast found in decaying cladodes ofOpuntia inermis and in necrotic tissue of cereoid cacti.Int. J. Syst. Bacteriol. 30:596–600.

    Google Scholar 

  • Phaff, H.J., Starmer, W.T., Tredick, J., andMiranda, M. 1985. Pichiadeserticola andCandida deserticola, two new species of yeast associated with necrotic stems of cacti.Int. J. Syst. Bacteriol. 35:211–216.

    Google Scholar 

  • Ricklefs, R.E. 1979. Ecology, 2nd ed. Chiron Press, New York.

    Google Scholar 

  • Robertson, F.W., Shook, M., Takei, G., andGaines, H. 1968. Observations on the biology and nutrition ofDrosophila disticha Hardy, an indigenous Hawaiian species.Univ. Texas Publ. 6818:279–299.

    Google Scholar 

  • Rosenthal, G.A., andJanzen, D.H. (eds.) 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York. 718 pp.

    Google Scholar 

  • Roughgarden, J. 1978. Coevolution in ecological systems HI. Coadaptation and equilibrium population size, pp. 27–48,in P.P. Brussard (ed.). Ecological Genetics: The Interface. Springer-Verlag, New York.

    Google Scholar 

  • Sampsell, B., andLatham, B. 1984. Survival of ADH thermostability variants on naturally occurring alcohols.Dros. Info. Ser. 60:176–177.

    Google Scholar 

  • Sang, J.H. 1956. The quantitative nutritional requirements ofDrosophila melanogaster.J. Exp. Biol. 33:45–72.

    Google Scholar 

  • Sang, J.H. 1978. The nutritional requirements ofDrosophila, pp. 159–192.in M. Ashburner and T.R.F. Wright (eds.). The Genetics and Biology ofDrosophila, Vol. 2. Academic Press, New York.

    Google Scholar 

  • Starmer, W.T. 1980. The evolutionary ecology of yeasts found in the decaying stems of cacti, pp. 493–498.in G.G. Stewart and I. Russell (eds.). Vth International Symposium on Yeasts. Pergamon Press, Toronto.

    Google Scholar 

  • Starmer, W.T. 1981a. A comparison ofDrosophila habitats according to the physiological attributes of the associated yeast communities.Evolution 35:38–52.

    Google Scholar 

  • Starmer, W.T. 1981b. An analysis of the fundamental and realized niche of cactophilic yeasts, pp. 129–156,in D. T. Wicklow and G. Carroll (eds.). The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker, New York.

    Google Scholar 

  • Starmer, W.T. 1982a. Associations and interactions among yeasts,Drosophila and their habitats, pp. 159–174,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeasl-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Starmer, W.T. 1982b. Analysis of the community structure of yeasts associated with the decaying stems of cactus. I.Stenocereus gummosus.Microb. Ecol. 8:71–81.

    Google Scholar 

  • Starmer, W.T., andPhaff, H.J. 1983. Analysis of the community structure of yeasts associated with the decaying stems of cactus. II.Opuntia species,Microb. Ecol. 9:247–259.

    Google Scholar 

  • Starmer, W.T., Heed, W.B., Miranda, M., Miller, M.W., andPhaff, H.J. 1976. The ecology of yeast flora associated with cactiphilicDrosophila and their host plants in the Sonoran Desert.Microb. Ecol. 3:11–30.

    Google Scholar 

  • Starmer, W.T., Phaff, H.J., Miranda, M., andMiller, M.W. 1978a.Pichia amethionina, a new heterothallic yeast associated with the decaying stems of cereoid cacti.Int. J. Syst. Bacterial. 28:433–441.

    Google Scholar 

  • Starmer, W.T., Phaff, H.J., Miranda, M., andMiller, M.W. 1978b.Pichia cactophila, a new species of yeast found in the decaying tissue of cacti.Int. J. Syst. Bacteriol. 28:318–325.

    Google Scholar 

  • Starmer, W.T., Phaff, H.J., Miranda, M., Miller, M.W., andBarker, J.S.F. 1979.Pichia opuntiae, a new heterothallic species of yeast found in the decaying cladodes ofOpuntia inermis and in necrotic tissue of cereoid cacti.Int. J. Syst. Bacteriol. 29:159–167.

    Google Scholar 

  • Starmer, W.T., Kircher, H.W., andPhaff, H.J. 1980. Evolution and speciation of host plantspecific yeasts.Evolution 34:137–146.

    Google Scholar 

  • Starmer, W.T., Phaff, H.J., Miranda, M., Miller, M.W., andHeed, W.B. 1982. The yeast flora associated with the decaying stems of columnar cacti andDrosophila in North America.Evol. Biol. 14:269–295.

    Google Scholar 

  • Starmer, W.T., Phaff, H.J., Tredick, J., Miranda, M., andAberdeen, V. 1984.Pichia antillensis, a new species of yeast associated with necrotic stems of cactus in the Lesser Antilles.Int. J. Syst. Bacteriol. 34:350–354.

    Google Scholar 

  • Starmer, W.T.,Barker, J.S.F.,Phaff, H.J., andFogleman, J.C. 1986. The adaptations ofDrosophila and yeasts: Their interactions with the volatile 2-propanol in the cactus-Drosophila-microorganism model system.Aust. J. Biol. Sci. 39:(in press).

  • Suomalainen, H., andOura, E. 1958. Cell permeability and decarboxylation of alpha-keto acids by intact yeasts.Biochim. Biophys. Acta 28:120–127.

    Google Scholar 

  • Vacek, D.C. 1979. The microbial ecology of the host plants ofDrosophila mojavensis. PhD dissertation. University of Arizona, Tucson.

    Google Scholar 

  • Vacek, D.C. 1982. Interactions between microorganisms and cactophilicDrosophila of Australia, pp. 175–190,in J.S.F. Barker and W.T. Starmer (eds.). Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System. Academic Press, Sydney.

    Google Scholar 

  • Wagner, R.P. 1944. The nutrition ofDrosophila mulleri andD. aldrichi. Growth of the larvae on a cactus extract and the microorganisms found in cactus.Univ. Texas Publ. 4445:104–128.

    Google Scholar 

  • Wagner, R.P. 1949. Nutritional differences in the Mulleri group.Univ. Texas Publ. 4920:39–41.

    Google Scholar 

  • Whittaker, R.H., andFeeny, P.O. 1971. Allelochemicals: chemical interactions between species.Science 171:757–770.

    Google Scholar 

  • Wolin, C.L., andLawlor, L.R. 1984. Models of facultative mutualism: Density effects.Am. Nat. 124:843–862.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starmer, W.T., Fogleman, J.C. Coadaptation ofDrosophila and yeasts in their natural habitat. J Chem Ecol 12, 1037–1055 (1986). https://doi.org/10.1007/BF01638995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01638995

Key words

Navigation