Skip to main content
Log in

Molecular evolution of influenza viruses

  • Part B: Molecular Processes Involved In The Evolution Of RNA And DNA Viruses
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

There are two different mechanisms by which influenza viruses might evolve: (1) Because the RNA genome of influenza viruses is segmented, new strains can suddenly be produced by reassortment, as happens, for example, during antigenic shift, creating new pandemic strains. (2) New viruses evolve relatively slowly by stepwise mutation and selection, for example, during antigenic or genetic drift. Influenza A viruses were found in various vertebrate species, where they form reservoirs that do not easily mix. While human influenza A viruses do not spread in birds and vice versa, the species barrier to pigs is relatively low, so that pigs might function as “mixing vessels” for the creation of new pandemic reassortants in Southeast Asia, where the probability is greatest for double infection of pigs by human and avian influenza viruses. Phylogenetic studies revealed that about 100 years ago, an avian influenza A virus had crossed the species barrier, presumably first to pigs, and from there to humans, forming the new stable human and classical swine lineages. In 1979, again, an avian virus showed up in the North European swine population, forming another stable swine lineage. The North European swine isolates from 1979 until about 1985 were genetically extremely unstable. A hypothesis is put forward stating that a mutator mutation is necessary to enable influenza virus to cross the species barrier by providing the new host with sufficient variants from which it can select the best fitting ones. As long as the mutator mutation is still present, such a virus should be able to cross the species barrier a second time, as happened about 100 years ago. Although the most recent swine isolates from northern Germany are again genetically stable, we nevertheless should be on the lookout to see if a North European swine virus shows up in the human population in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parvin J.D., Mascona A., Pan W.T., Leider J.M., and Palese P., J Virol59 377–383, 1986.

    Google Scholar 

  2. Hinshaw V.S. and Webster R.G. in Beare A.S. (ed).Basic and Applied Influenza Research. CRC Press, Boca Raton, FL, 1982, pp. 79–104.

    Google Scholar 

  3. Hinshaw V.S., Webster R.G., and Rodriguez R.J., Arch Virol67 191–201, 1981.

    Google Scholar 

  4. Kilbourne E.D.,Influenza. Plenum Medical, New York, 1987.

    Google Scholar 

  5. Scholtissek C., Rohde W., von Hoyningen V., and Rott R, Virology87 13–20, 1978.

    Google Scholar 

  6. Fang R., Min Jou W., Huylebroeck D., Devos R., and Fiers W., Cell25 315–325, 1981.

    Google Scholar 

  7. Kawaoka Y., Krauss S., and Webster R.G., J Virol63 4603–4608, 1989.

    Google Scholar 

  8. Scholtissek C., Med Principles Pract2 65–71, 1990.

    Google Scholar 

  9. Shortridge F.K. and Stuart-Harris C., Lancet —, 812–813, 1982.

  10. Scholtissek C. and Naylor E., Nature331 215, 1988.

    Google Scholar 

  11. Scholtissek C., Rott R., Orlich M., Harms E., and Rohde W., Virology81 74–80, 1977.

    Google Scholar 

  12. Scholtissek C., Koennecke I., and Rott R., Virology91 79–85, 1978.

    Google Scholar 

  13. Scholtissek C., Vallbracht A., Flehmig B., and Rott R., Virology95 492–500, 1989.

    Google Scholar 

  14. Bonin J. and Scholtissek C., Arch Virol75 255–268, 1983.

    Google Scholar 

  15. Bean W.J., Hinshaw V.S., and Webster R.G.. in Bishop D.H.L. and Compans R.W. (eds).The Replication of Negative Strand Viruses. Elsevier-North Holland, New York, 1981, pp. 363–367.

    Google Scholar 

  16. Yamnikova S.S., Mandler J., Bekh-Ochir Z.H., Dachtzeren P., Ludwig S., Lvov D.K., and Scholtissek C., Virology197 558–563, 1993.

    Google Scholar 

  17. Kawaoka Y., Naeve C.W., and Webster R.G., Virology139 303–316, 1984.

    Google Scholar 

  18. Klenk H.-D. and Rott R., Adv Virus Res34 247–281, 1988.

    Google Scholar 

  19. Scholtissek C., Bürger H., Kistner O., and Shortridge K.F., Virology147 287–294, 1985.

    Google Scholar 

  20. Webster R.G., Yakhno M., Hinshaw V.S., Bean W.J., and Murti G., Virology84 268–278, 1978.

    Google Scholar 

  21. Scholtissek C., Vaccine3 215–218, 1985.

    Google Scholar 

  22. Gammelin M., Altmüller A., Reinhardt U., Mandler J., Harley V.R., Hudson P.J., Fitch W.M., and Scholtissek C., Mol Biol Evol7 194–200, 1990.

    Google Scholar 

  23. Gorman O.T., Bean W.J., Kawaoka Y., and Webster R.G., J Virol64 1487–1497, 1990.

    Google Scholar 

  24. Webster R.G., Bean W.J., Gorman O.T., Chambers T.M., and Kawaoka Y., Microbiol Rev56 152–179, 1992.

    Google Scholar 

  25. Scholtissek C., Ludwig S., and Fitch W.M., Arch Virol131 237–250, 1993.

    Google Scholar 

  26. Okazaki K., Kawaoka Y., and Webster R.G., Virology131 601–608, 1989.

    Google Scholar 

  27. Gorman O.T., Donis R.O., Kawaoka Y., and Webster R.G., J Virol64 4893–4902, 1990.

    Google Scholar 

  28. Schultz U., Fitch W.M., Ludwig S., Mandler J., and Scholtissek C., Virology183 61–73, 1991.

    Google Scholar 

  29. Ludwig S., Schultz U., Mandler J., Fitch W.M., and Scholtissek C., Virology183 566–577. 1991.

    Google Scholar 

  30. Scholtissek C., Bürger H., Bachmann P.R., and Hannoun C., Virology129 521–523, 1983.

    Google Scholar 

  31. Hinshaw V.S., Alexander D.J., Ayward M., Bachmann P.N., Easterday B.C., Hannoun C., Kida W., Lipkind M., Mackenzie J.S., Nerowe K., Schild G.C., Scholtissek C., Senne D.A., Shortridge K.F., Skehel J.J., and Webster R.G., Bull World Health Organ62 871–878, 1984.

    Google Scholar 

  32. Ludwig S., Haustein A., Kaleta E.F., and Scholtissek C., Virology202 281–286, 1994.

    Google Scholar 

  33. Ludwig S., Stitz L., Planz O., Van H., Fitch W.M., and Scholtissek C., Virology212 555–561, 1995.

    Google Scholar 

  34. Suárez P., Valcácell J., and Ortin J., J Virol66 2491–2494, 1992.

    Google Scholar 

  35. Claas E.C.J., Kawaoka Y., De Jong J.C., Masurel N., and Webster R.G., Virology204 453–457, 1994.

    Google Scholar 

  36. Scholtissek C., von Hoyningen V., and Rott R., Virology89 613–617, 1978.

    Google Scholar 

  37. Nakajima K., Desselberger U., and Palese P., Nature274 334–339, 1978.

    Google Scholar 

  38. Gorman O.T., Bean W.J., Kawaoka Y., Donatelli I., Guo Y., and Webster R.G., J Virol65 3704–3714, 1991.

    Google Scholar 

  39. Fitch W.M., Syst Zool20 406–416, 1971.

    Google Scholar 

  40. Fitch W.M. and Farris J.S., J Mol Evol3 263–278, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholtissek, C. Molecular evolution of influenza viruses. Virus Genes 11, 209–215 (1995). https://doi.org/10.1007/BF01728660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728660

Key words

Navigation