Skip to main content
Log in

Processing of Holliday junctions by theEscherichia coli RuvA, RuvB, RuvC and ReeG proteins

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Recent work has led to significant advances in our understanding of the late steps of genetic recombination and the post-replicational repair of DNA. The RuvA and RuvB proteins have been shown to interact with recombination intermediates and catalyse the branch migration of Holliday junctions. Although both proteins are required for branch migration, each plays a defined role with RuvA acting as a specificity factor that directs RuvB (an ATPase) to the junction. The RuvB ATPase provides the motor for branch migration. The next step is catalysed by RuvC protein which recognises Holliday junctions and promotes their resolution by endonucleolytic cleavage. New data indicates an alternative pathway for Holliday junction processing. This pathway involves RecG, a branch migration protein which is functionally analogous to RuvAB, and a protein (activated by arus mutation) which works with RecG to process intermediates independently of RuvA, RuvB and RuvC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, R. J., Dunderdale, H. J., and West, S. C., Resolution of Holliday junctions by RuvC resolvase: Cleavage specificity and DNA distortion. Cell74 (1993) 1021–1031.

    Article  CAS  PubMed  Google Scholar 

  2. Benson, F. E., Illing, G. T., Sharples, G. J., and Lloyd, R. G., Nucleotide sequencing of theruv region ofE. coli K-12 reveals a LexA regulated operon encoding two genes. Nucl. Acids Res.16 (1988) 1541–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson, F. E., and West, S. C., Substrate specificity of theE. coli RuvC protein: Resolution of 3- and 4-stranded recombination intermediates. J. biol. Chem.269 (1994) in press.

  4. Burkhoff, A. M., and Tullius, T. D., Structural details of an adenine tract that does not cause DNA to bend. Nature331 (1988) 455–456.

    Article  CAS  PubMed  Google Scholar 

  5. Connolly, B., Parsons, C. A., Benson, F. E., Dunderdale, H. J., Sharples, G. J., Lloyd, R. G., and West, S. C., Resolution of Holliday junctionsin vitro requiresEscherichia coli ruvC gene product. Proc. natl Acad. Sci. USA88 (1991) 6063–6067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Connolly, B., and West, S. C., Genetic recombination inEscherichia coli: Holliday junctions made by RecA protein are resolved by fractionated cell-free extracts. Proc. natl Acad. Sci. USA87 (1990) 8476–8480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cox, M. M., and Lehman, I. R., Enzymes of genetic recombination. A. Rev. Biochem.56 (1987) 229–262.

    Article  CAS  Google Scholar 

  8. Duckett, D. R., Murchie, A. I. H., and Lilley, D. M. J., The role of metal ions in the conformation of the four-way junction. EMBO J.9 (1990) 583–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunderdale, H. J., Benson, F. E., Parsons, C. A., Sharples, G. J., Lloyd, R. G., and West, S. C., Formation and resolution of recombination intermediates byE. coli RecA and RuvC proteins. Nature354 (1991) 506–510.

    Article  CAS  PubMed  Google Scholar 

  10. Dunderdale, H. J., Sharples, G. J., Lloyd, R. G., and West, S. C., Cloning, over-expression, purification and characterization of theE. coli RuvC Holliday junction resolvase. J. biol. Chem.269 (1994) in press.

  11. Holliday, R., A mechanism for gene conversion in fungi. Genet. Res.5 (1964) 282–304.

    Article  Google Scholar 

  12. Iwasaki, H., Shiba, T., Makino, K., Nakata, A., and Shinagawa, H., Overproduction, purification, and ATPase activity of theEscherichia coli RuvB protein involved in DNA repair. J. Bact.171 (1989) 5276–5280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iwasaki, H., Takahagi, M., Nakata, A., and Shinagawa, H.,Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev.6 (1992) 2214–2220.

    Article  CAS  PubMed  Google Scholar 

  14. Johnson, R. D., and Symington, L. S., Crossed-stranded DNA structures for investigating the molecular dynamics of the Holliday junction. J. molec. Biol.229 (1993) 812–820.

    Article  CAS  PubMed  Google Scholar 

  15. Kemper, B., Pottmeyer, S., Solaro, P., and Kosak, H., Resolution of DNA secondary structures by endonuclease VII (endo VII) from phage T4, in: DNA Structure and Methods. I. Human Genome Initiative and DNA Recombination, pp. 215–229. Eds. R. H. Sarma and M. H. Sarma, Adenine Press, New York 1990.

    Google Scholar 

  16. Lloyd, R. G., Conjugal recombination in resolvase-deficientruvC mutants ofEscherichia coli K12 depends onrecG. J. Bact.173 (1991) 5414–5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lloyd, R. G., Benson, F. E., and Shurvinton, C. E., Effect ofruv mutations on recombination and DNA repair inEscherichia coli K12. Molec. gen. Genet.194 (1984) 303–309.

    Article  CAS  PubMed  Google Scholar 

  18. Lloyd, R. G., Buckman, C., and Benson, F. E., Genetic analysis of conjugational recombination inEscherichia coli K12 strains deficient in RecBCD enzyme. J. gen. Microbiol.133 (1987) 2531–2538.

    CAS  PubMed  Google Scholar 

  19. Lloyd, R. G., and Sharples, G. J., Dissociation of synthetic Holliday junctions byE. coli RecG protein. EMBO J.12 (1993) 17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lloyd, R. G., and Sharples, G. J., Processing of recombination intermediates by the RecG and RuvAB proteins ofEscherichia coli. Nucl. Acids Res.21 (1993) 1719–1725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luisi-DeLuca, C., Lovett, S. T., and Kolodner, R. D., Genetic and physical analysis of plasmid recombination inrecB recC sbcB andrecB recC sbcA Escherichia coli K-12 mutants. Genetics122 (1989) 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mandal, T. N., Mahdi, A. A., Sharples, G. J., and Lloyd, R. G., Resolution of Holliday intermediates in recombination and DNA repair: Indirect suppression ofruvA, ruvB andruvC mutations. J. Bact.175 (1993) 4325–4334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meselson, M., Formation of hybrid DNA by rotary diffusion during genetic recombination. J. molec. Biol.71 (1972) 795–798.

    Article  CAS  PubMed  Google Scholar 

  24. Müller, B., Burdett, I., and West, S. C., Unusual stability of recombination intermediates made byE. coli RecA protein. EMBO J.11 (1992) 2685–2693.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Müller, B., Tsaneva, I. R., and West, S. C., Branch migration of Holliday junctions promoted by theEscherichia coli RuvA and RuvB proteins: I. Comparison of the RuvAB- and RuvB-mediated reactions. J. biol. Chem.268 (1993) 17179–17184.

    Article  PubMed  Google Scholar 

  26. Müller, B., Tsaneva, I. R., and West, S. C., Branch migration of Holliday junctions promoted by theEscherichia coli RuvA and RuvB proteins: II. Interaction of RuvB with DNA. J. biol. Chem.268 (1993) 17185–17189.

    Article  PubMed  Google Scholar 

  27. Otsuji, N., lyehara, H., and Hideshima, Y., Isolation and characterisation of anEscherichia coli ruv mutant which forms nonseptate filaments after low doses of ultraviolet irradiation. J. Bact.117 (1974) 337–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Panyutin, I. G., and Hsieh, P., Formation of a single base mismatch impedes spontaneous DNA branch migration. J. molec. Biol.230 (1993) 413–424.

    Article  CAS  PubMed  Google Scholar 

  29. Parsons, C. A., Tsaneva, I., Lloyd, R. G., and West, S. C., Interaction ofEscherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc. natl Acad. Sci. USA89 (1992) 5452–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parsons, C. A., and West, S. C., Formation of a RuvAB-Holliday junction complexin vitro. J. molec. Biol.232 (1993) 397–405.

    Article  CAS  PubMed  Google Scholar 

  31. Radding, C. M., Homologous pairing and strand exchange in genetic recombination. A. Rev. Genet.16 (1982) 405–437.

    Article  CAS  Google Scholar 

  32. Sancar, A., and Hearst, J. E., Molecular matchmakers. Science259 (1993) 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  33. Sharples, G. J., Benson, F. E., Illing, G. T., and Lloyd, R. G., Molecular and functional analysis of theruv region ofEscherichia coli K-12 reveals three genes involved in DNA repair and recombination. Molec. gen. Genet.221 (1990) 219–226.

    Article  CAS  PubMed  Google Scholar 

  34. Sharples, G. J., and Lloyd, R. G., Resolution of Holliday junctions inE. coli: Identification of theruvC gene product as a 19 kDa protein. J. Bact.173 (1991) 7711–7715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shiba, T., Iwasaki, H., Nakata, A., and Shinagawa, H.,Escherichia coli RuvA and RuvB proteins involved in recombination repair: physical properties and interactions with DNA. Molec. gen. Genet.237 (1993) 395–399.

    Article  CAS  PubMed  Google Scholar 

  36. Shiba, T., Iwasaki, H., Nakata, A., and Shinagawa, H., SOS-inducible DNA repair proteins, RuvA and RuvB, ofEscherichia coli: Functional interactions between RuvA and RuvB for ATP hydrolysis and renaturation of the cruciform structure in supercoiled DNA. Proc. natl Acad. Sci. USA88 (1991) 8445–8449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shinagawa, H., Makino, K., Amemura, M., Kimura, S., Iwasaki, H., and Nakata, A., Structure and regulation of theEscherichia coli ruv operon involved in DNA repair and recombination. J. Bact.170 (1988) 4322–4329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sigal, N., and Alberts, B., Genetic recombination: The nature of a crossed strand exchange between two homologous DNA molecules. J. molec. Biol.71 (1972) 789–793.

    Article  CAS  PubMed  Google Scholar 

  39. Stacey, K. A., and Lloyd, R. G., Isolation ofrec mutants from an F-prime merodiploid strain ofEscherichia coli K-12. Molec. gen Genet.143 (1976) 223–232.

    Article  CAS  PubMed  Google Scholar 

  40. Takahagi, M., Iwasaki, H., Nakata, A., and Shinagawa, H., Molecular analysis of theEscherichia coli ruvC gene, which encodes a Holliday junction specific endonuclease. J. Bact.173 (1991) 5747–5753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thompson, B. J., Camien, M. N., and Warner, R. C., Kinetics of branch migration in double-stranded DNA. Proc. natl Acad. Sci. USA73 (1976) 2299–2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsaneva, I. R., Illing, G. T., Lloyd, R. G., and West, S. C., Purification and properties of the RuvA and RuvB proteins ofEscherichia coli. Molec. gen. Genet.235 (1992) 1–10.

    Article  CAS  PubMed  Google Scholar 

  43. Tsaneva, I. R., Müller, B., and West, S. C., ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins ofE. coli. Cell69 (1992) 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  44. Tsaneva, I. R., Müller, B., and West, S. C., The RuvA and RuvB proteins ofE. coli exhibit DNA helicase activityin vitro. Proc. natl Acad. Sci. USA90 (1993) 1315–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Warner, R. C., Fishel, R. A., and Wheeler, F. C., Branch migration in recombination. Cold Spring Harb. Symp. quant. Biol.43 (1978) 957–968.

    Article  Google Scholar 

  46. West, S. C., Enzymes and molecular mechanisms of homologous recombination. A. Rev. Biochem.61 (1992) 603–640.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, B., West, S.C. Processing of Holliday junctions by theEscherichia coli RuvA, RuvB, RuvC and ReeG proteins. Experientia 50, 216–222 (1994). https://doi.org/10.1007/BF01924004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01924004

Key words

Navigation