Skip to main content
Log in

Characterization of thelet-653 gene inCaenorhabditis elegans

Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A mutation in thelet-653 gene ofCaenorhabditis elegans results in larval death. The lethal arrest is concurrent with the appearance of a vacuole anterior to the lower pharyngeal bulb. The position of the vacuole is consistent with a dysfunction of the secretory/excretory apparatus. Germline transformation rescue experiments were able to position thelet-653 gene to two overlapping cosmid subclones. Sequence data generated from both cDNA and genomic DNA subclones indicated thatlet-653 encodes a mucin-like protein. Our characterization suggests that a mucin-like protein is essential for effective functioning of the secretory/excretory apparatus withinC. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aebi M, Hornig H, Weissmann C (1987) 5′ cleavage site in eukaryotic pre-mRNA splicing is determined by the overall 5′ splice consensus not by the conserved 5′ GU. Cell 50:237–246

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Anderson MP, Rich DP, Gregory RJ, Smith AE, Welsh MJ (1991) Generation of cAMP-activated chloride currents by expression of CFTR. Science 251:679–682

    Google Scholar 

  • Barstead RJ, Waterston RH (1989) The basal component of the nematode dense-body is vinculin. J Biol Chem 114:715–724

    Google Scholar 

  • Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. J Cell Biol 67:835–851

    Google Scholar 

  • Blumental T, Thomas J (1988)Cis andtrans mRNA splicing inC. elegans. Trends Genet 4:305–309

    Google Scholar 

  • Brenner S (1974) The genetics ofCaenorhabditis elegans. Genetics 115:71–94

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acid sequences with ESEE. Comp Appl Biol Sci 5:233–234

    Google Scholar 

  • Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC (1989) Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84:68–72

    Google Scholar 

  • Clark DV (1990) Theunc-22(IV) region ofCaenorhabditis elegans: genetic analysis and molecular mapping. PhD Thesis, Simon Fraser University, Burnaby, BC, Canada

    Google Scholar 

  • Clark DV, Baillie DL (1992) Genetic analysis and complementation by germline transformation of lethal mutations in theunc-22(IV) region ofCaenorthabditis elegans. Mol Gen Genet 232:97–105

    Google Scholar 

  • Coulson A, Sulston J, Brenner S, Kam J (1986) Toward a physical map of the genome of the nematodeCaenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Google Scholar 

  • Croll NA, Slater L, Smith JM (1972)Ancylostoma tubaeforme: osmoregulatory ampulla of larvae. Exp Parasitol 33:356–360

    Google Scholar 

  • Feinberg A, Vogelstein B (1983) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Ferguson EL, Horvitz HR (1985) Identification and characterization of 22 genes that effect the vulval lineages of the nematodeCaenorhabditis elegans. Genetics 110:17–72

    Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166:557

    Google Scholar 

  • Hauser F, Werner H (1992) P-domains as shuffled cysteme-rich modules in integumentary mucin C.1 (FIM-C.1) formXenopus laevis. J Biol Chem 267:24620–24624

    Google Scholar 

  • Henikoff S (1987) Unidirectional digestion with Exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165

    Google Scholar 

  • Jackson I (1991) A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 19:3795–3798

    Google Scholar 

  • Kramer JM, French RP, Park E-C, Johnson JJ (1990) TheCaenorhabditis elegans rol-6 gene, which interacts with thesqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 10:2081–2089

    Google Scholar 

  • Lambie EJ, Kimble J (1991) Two homologous regulatory genes,lin-12 and p-1, have overlapping functions. Development 112:231–240

    Google Scholar 

  • Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer inC. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    Google Scholar 

  • Moerman DG, Baillie DL (1979) Genetic organization inCaenorhabditis elegans: fine structure analysis of theunc-22 gene. Genetics 91:95–103

    Google Scholar 

  • Nelson FK, Albert PS, Riddle DL (1984) Functional study of theCaenorhabditis elegans secretory/excretory system using laser microsurgery. J Exp Zool 231:45–56

    Google Scholar 

  • Okkema PG, White Harrison S, Plunger V, Aryana A, Fire A (1993) Sequence requirements for myosin gene expression and regulation inCaenorhabditis elegans. Genetics 135:385–404

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Singh SS, Sulston JE (1978) Some observations of moulting inCaenorhabditis elegans. Nematologica 24:63–71

    Google Scholar 

  • Snutch TP (1984) A molecular and genetic analysis of the heat shock response ofCaenorhabditis elegans. Ph.D. thesis, Simon Fraser University, Burnaby, BC, Canada

    Google Scholar 

  • Speith J, Booke G, Kuersten S, Lea K, Blumenthal T (1993) Operons inC. elegans: polycistronic mRNA procursors are processed by trans-splicing to downstream coding regions. Cell 73:521–532

    Google Scholar 

  • Strous GJ, Dekkler J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92

    Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematodeCaenorhabditis elegans. Dev Biol 56:110–156

    Google Scholar 

  • Verma M, Davidson EA (1993) Molecular cloning and sequencing of a canine tracheobronchial mucin cDNA containing a cysteine-rich domain. Proc Natl Acad Sci USA 90:7144–7148

    Google Scholar 

  • Von Heijne G (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res 14:4683

    Google Scholar 

  • Weinstein PP (1952) Regulation of water balance as a function of the excretory system of the filariform larvae ofNippostrongylus muris andAncylostoma canium. Exp Parasitol 1:363–376

    Google Scholar 

  • Zotter S, Hageman PC, Lossnitzer A, van-den-Tweel J, Hilkens J, Mooi WW, Hilgers J (1988) Monoclonal antibodies to epithelial sialomucins recognize epitopes at different cellular sites in adenolymphomas of the parotid gland. Int J Cancer 3:38–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. Finnegan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, S.J.M., Baillie, D.L. Characterization of thelet-653 gene inCaenorhabditis elegans . Molec. Gen. Genet. 248, 719–726 (1995). https://doi.org/10.1007/BF02191712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02191712

Key words

Navigation