Skip to main content
Log in

Volume regulation in brain cells: Cellular and molecular mechanisms

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Basavappa, S., Chartouni, V., Kirk, K., Prpic, V., Ellory, J.C., and Mangel, A.W. (1995). Swelling-induced chloride currents in neuroblastoma cells are calcium dependent.J. Neurosci. 15:3662–3666.

    Google Scholar 

  • Bender, A.S., Neary, J.T., and Norenberg, M.D. (1992a). Involvement of second messengers and protein phosphorylation in astrocyte swelling.Can. J. Physiol. Pharmacol. 70:S362-S366.

    Google Scholar 

  • Bender, A.S., Neary, J.T., Blicharska, J., Norenberg, L-O.B., and Norenberg, M.D. (1992b). Role of Calmodulin and protein kinase C in astrocytic cell volume regulation.J. Neurochem. 58:1874–1882.

    Google Scholar 

  • Bender, A.S., Neary, J.T., and Norenberg, M.D. (1993). Role of phosphoinositide hydrolysis in astrocyte volume regulation.J. Neurochem. 61:1506–1514.

    Google Scholar 

  • Bender, A.S., and Norenberg, M.D. (1994). Calcium Dependence of hypoosmotically induced potassium release in cultured astrocytes.J. Neurosci. 14:4237–4243.

    Google Scholar 

  • Chan, P.H. and Fishman, R.A. (1979). Elevation of rat brain amino acids, ammonia and idiogenic osmoles induced by hyperosmolality.Brain Res. 161:293–301.

    Google Scholar 

  • Chamberlin, M.E., and Strange, K. (1989). Anisosmotic cell volume regulation: a comparative view.Am. J. Physiol. 257:C159-C172.

    Google Scholar 

  • Chassande, O., Frelin, C. Farahifar, D, Jean, T., and Lazdunski, M. (1988). The Na+/K+/Cl contransport in C6 glioma cells properties and role in volume regulation.Eur. J. Biochem. 171:425–433.

    Google Scholar 

  • Christensen, O. (1987). Mediation of cell volume regulation by Ca influx through stretch-activated channels.Nature, (London) 330:66–69.

    Google Scholar 

  • Cserr, H.F., DePasquale, M., and Patlak, C.S. (1987a). Regulation of brain water and electrolytes during acute hyperosmolality in rats.Am. J. Physiol. 253:F522-F529.

    Google Scholar 

  • Cserr, H.F., DePascuale, M., and Patlak, C.S. (1987b). Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolality.Am. J. Physiol. 253:F530–537.

    Google Scholar 

  • Cserr, H.F., DePascuale, M., Nicholson, C., Patlak, C.S., Pettigrew, K.D., and Rice, M.E. (1991). Extracellular volume decreases while cell volume is maintained by ion uptake in rat brain during acute hypernatremia.J. Physiol. 442:227–295.

    Google Scholar 

  • Dermietzel, R., Hwang, T. Buettener, R., Hofer, A., Dotzler, E., Kremer, M., et al. (1994). Cloning andin situ localization of a brain-derived porin that constitutes a large conductance anion channel in astrocytic plasma membranes.Proc. Natl. Acad. Sci. USA 91:499–503.

    Google Scholar 

  • Ede, R.J., and Williams, R. (1986). Hepatic encephalopathy and cerebral edema.Semin. Liver Dis. 6:107–118.

    Google Scholar 

  • Eriksson, P.S., Nilsson, M., Wagberg, M., Ronnback, L, Hansson, E. (1992). Volume regulation of single astroglial cells in primary culture.Neurosci. Lett. 143:1–2.

    Google Scholar 

  • Falke, L.C., Misler, S. (1989). Activity of ion channels during volume regulation by clonal N1E115 neuroblastoma cells.Proc. Natl. Acad. Sci. USA 86:3919–3923.

    Google Scholar 

  • Fiévet, B., Gabillat, N., Borgese, F and Motais, R. (1995). Expression of band 3 anion exchanger induces chloride current and taurine transport: structure-function analysis.EMBO J. 14:5158–5169.

    Google Scholar 

  • Goldberg, M.P., and Choi, D.W. (1993). Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury.J. Neurosci. 13:3510–3524.

    Google Scholar 

  • González, E., Sánchez-Olea, R. and Pasantes-Morales, H. (1995). Inhibition by C1 channel blockers of the volume activated, diffusional mechanism of inositol transport in primary astrocytes in culture.Neurochem. Res. 20:895–900.

    Google Scholar 

  • Gründer, S., Thiemann, A., Pusch, M., and Jentsch, T.J. (1992). Regions involved in the opening of C1C-2 chloride channel by voltage and cell volume.Nature. 360:759–762.

    Google Scholar 

  • Gullans, S.R., and Verbalis, J.G. (1993). Control of brain volume during hyperosmolar and hypoosmolar conditions.Annu. Rev. Med. 44 289–301.

    Google Scholar 

  • Higgins, C.F. (1995). P-glycoprotein and cell volume-activated chloride channels.J. Bioenerg. Biomembr. 27:63–70.

    Google Scholar 

  • Hochman, D.W., Baraban, S.C., Owens, J.W.M., and Schwarzkroin, P.A. (1995). Dissociation of synchronization and excitability in furosemide blockade of epileptiform activity.Science. 270:99–102.

    Google Scholar 

  • Holopainen, I., Oja, S.S., Marnela, K-M., and Kontro, P. (1986). Free amino acids in primary culture: changes during cell maturation.Int. J. Devl. Neurosci. 4:493–496.

    Google Scholar 

  • Isaacks, R.E., Bender, A.S., Kim, C.Y., Prieto, N.M., and Norenberg, M.D. (1994). Osmotic regulation of myo-inositol uptake in primary astrocyte cultures.Neurochem. Res. 19:331–338.

    Google Scholar 

  • Islas, L., Pasantes-Morales, H. and Sánchez, J. (1993). Characterization of stretch-activated ion channels in cultured astrocytes.Glia 8:87–96.

    Google Scholar 

  • Jackson, P.S., and Strange, K. (1993). Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux.Am. J. Physiol. 265:C1489-C1500.

    Google Scholar 

  • Jackson, P.S., Morrison, R., and Strange, K. (1994). The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding.Am. J. Physiol. 267:C1203-C1209.

    Google Scholar 

  • Jackson, P.S., and Strange, K. (1995a). Characterization of the voltage-dependent properties of a volume-sensitive anion conductance.J. Gen. Physiol. 105:661–676.

    Google Scholar 

  • Jackson, P.S., and Strange, K. (1995b). Single-Channel properties of a volume-sensitive anion conductance.J. Gen. Physiol. 105:643–660.

    Google Scholar 

  • Jalonen, T.S. (1993). Single-channel characteristics of the large-conductance anion channel in rat cortial astrocytes in primary culture.Glia. 9:227–237.

    Google Scholar 

  • Jentsch, T.J. (1994). Molecular physiology pf anion channels.Curr. Opin. Cell Biol. 6:600–606.

    Google Scholar 

  • Kay, M.M.B., Hughes, J., Azgón, I., and Lin, F. (1991). Brain membrane protein 3 performs the same functions as erythrocyte band 3.Proc. Natl. Acad. Sci. USA. 88:2778–2782.

    Google Scholar 

  • Kempski, O., Chaussi, L., Gross, M., Zimmer, M. and Baethmann, A. (1983). Volume regulation and metabolism of suspendend C6 glioma cells: anin vitro model to study cytotoxic brain edema.Brain Res. 279:217–228.

    Google Scholar 

  • Kimelberg, H.K. (1990). Chloride transport across glial membranes. In (F.J. Alvarez-Leehfmans, and J.M. Russell, eds.),Chloride Channels and Carriers in Nerve, Muscle and Glial Cells, Plenum Press, New York, pp. 159–192.

    Google Scholar 

  • Kimelberg, H.K., and Frangakis, M. (1986). Volume regulation in primary astrocyte cultures.Adv. Biosci. 67:177–186.

    Google Scholar 

  • Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewsky, R.A. (1990). Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures.J. Neurosci. 10:1583–1591.

    Google Scholar 

  • Kimelberg, H.K., Anderson, E. and Kettenmann, H. (1990). Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. II. Whole cell currents.Brain Res. 529:262–268.

    Google Scholar 

  • Law, R.O. (1994). Taurine efflux and the regulation of cell volume in incubated slices of rat cerebral cortex.Biochim. Biophys. Acta 1221:21–28.

    Google Scholar 

  • Law, R.O. (1995). Taurine efflux and cell volume regulation in cerebral cortical slices during chronic hypernatraemia.Neurosci. Lett. 185:56–59.

    Google Scholar 

  • Levi, G., and Patrizio, M. (1992). Astrocyte heterogeneity: endogenous amino acid levels and release evoked by non-N-methyl-D-Aspartate receptor agonists and by potassium-induced swelling in type-1 and type-2 astrocytes.J. Neurochem. 58:1943–1952.

    Google Scholar 

  • Lien, Y.H., Shapiro, J.I. and Chan, L. (1991). Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia.J. Clin. Invest. 88:303–309.

    Google Scholar 

  • Liu, M.Y. and Colombini, M. (1992). Regulation of mitochondrial respiration by cotrolling the permeability of the outer membrane through the mitochondrial channel, VDAC.Biochim. Biophys. Acta. 1098:255–260.

    Google Scholar 

  • Lohr, J.W. and Yohe, L.A. (1994). Mechanisms of hyposmotic volume regulation in glioma cells.Brain Res. 667:263–268.

    Google Scholar 

  • Macknight, A.D.C. (1988). Principles of cell volume regulation.Renal Physiol. Biochem. 3:114–141.

    Google Scholar 

  • McManus, M.L., and Churchwell, K.B. (1994). Clinical significance of cellular osmoregulation. In (K. Strange, ed.).Cellular and Molecular Physiology of Cell Volume Regulation. CRC. Boca Ratón, Fl., U.S.A. pp.63–74.

    Google Scholar 

  • Medrano, S. and Gruenstein, E. (1993). Mechanisms of regulatory volume decrase in UC-11MG human astrocytoma cells.Am. J. Physiol. 264:C1201-C1209.

    Google Scholar 

  • Melton, J.E., Patlak, C.S., Pettigrew, K.D., and Cserr, H.F. (1987). Volume regulatory loss of Na+, Cl, and K+ from rat brain during acute hyponatremia.Am. J. Physiol. 252:F661-F669.

    Google Scholar 

  • Mills, J.W., Schiewebert, E.M. and Stanton, B.A. (1994). The cytoskeleton and cell volume regulation. In (K. Strange, ed.),Cellular and Molecular Physiology of Cell Volume Regulation. CRC. Boca Ratón, Fl., U.S.A. pp. 241–258.

    Google Scholar 

  • Moorman, J.R., Ackerman, S.J., Kowdley, G.C., Griffin, M.P., Mounsey, J.P., Chen, Z., et al. (1995). Unitary anion currents through phospholemman channel molecules.Nature. 377:737–740.

    Google Scholar 

  • Nieminen, M.L., Tuomisto, L., Solatunturi, E., Eriksson, L. and Paasonen, M.K. (1998). Taurine in the osmoregulation of the Brattelboro rat.Life Sci. 42:2137–2143.

    Google Scholar 

  • Norenberg, M.D., Baker, L., Norenber, L.O.B., Blicharska, J., Bruce-Gregorios, J.H., and Neary, J.T. (1991). Ammonia-induced astrocyte swelling in primary culture.Neurochem. Res. 16:833–836.

    Google Scholar 

  • O'Connor, E.R., and Kimelberg, H.K. (1993). Role of Calcium in astrocyte volume regulation and in the release of Ions and amino acids.J. Neurosci. 13:2638–2650.

    Google Scholar 

  • Olson, J.E. and Goldfinger, M.D. (1990). Amino acid content of rat cerebral astrocytes adapted to hyperosmotic mediumin vitro.J. Neurosci. Res. 27:241–247.

    Google Scholar 

  • Olson, J.E., Sankar, R., Holtzman, D., James, A. Fleischhacker, D. (1986). Energy-dependent volume regulation in primary cultured cerebral astrocytes.J. Cell Physiol. 128:209–215.

    Google Scholar 

  • Pasantes-Morales, H. and Schousboe, A. (1988). Volume regulation in astrocytes: a role for taurine as osmoeffector.J. Neurosci. Res. 20:505–509.

    Google Scholar 

  • Pasantes-Morales, H., Maar, T., and Morán, J. (1993). Cell volume regulation in cultured cerebellar granule neurons.J. Neurosci. Res. 34:219–224.

    Google Scholar 

  • Pasantes-Morales, H., Murray, R.A., Lilja, L., and Morán, J. (1994a). Regulatory volume decrease in cultured astrocytes I. Potassium- and chloride-activated permeability.Am. J. Physiol. C165–C171.

  • Pasantes-Morales, H., Murray, R.A., Sánchez-Olea, R. and J. Morán (1994b). Regulatory volume decrease in cultured astrocytes: II. Activated permeability to amino acids and polyalcohols.Amer. J. Physiol. 266:C172-C178.

    Google Scholar 

  • Pasantes-Morales, H., Chacón, E. Murray R.A. and Morán, J. (1994c). Properties of osmolyte fluxes activated during regulatory volume decrease in cultured cerebellar granule neurons.J. Neurosci. Res. 37:720–727.

    Google Scholar 

  • Patel, A.J., and Hunt, A.H. (1985). Concentration of free amino acids in primary cultures of neurones and astrocytes.J. Neurochem. 44:1816–1821.

    Google Scholar 

  • Paulmichi, M., Gschwentner, M., Wüll E., Schmarda, A., Ritter, M. Kanin, G., et al. (1993). Insight into the structure-function relation of chloride channels.Cell Physiol. Biochem. 3:374–387.

    Google Scholar 

  • Pollard, C.E. (1993). A volume sensitive Cl-conductance in a mouse neuroblastoma X rat dorsal root ganglion cell line (F11).Brain Res. 614:178–184.

    Google Scholar 

  • Pollock, A.S. and Arieff, A.I. (1980). Abnormalities of cell volume regulation and their functional consequences.Amer. J. Physiol. 239:F195-F205.

    Google Scholar 

  • Pullen, R.G.L., DePasquale, M. and Cserr, H.F. (1987). Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality.Amer. J. Physiol. 253:F538–545.

    Google Scholar 

  • Roy, G. (1995). Amino acid current through anion channels in cultured human glial cells.J. Membr. Biol. 147:35–44.

    Google Scholar 

  • Saly, V., and Andrew, R.D. (1993). CA3 neuron excitation and epileptiform discharge are sensitive to osmolarity.J. Neurophysiol. 69:1–9.

    Google Scholar 

  • Sánchez-Olea R., Morán, J., Schousboe, A. and Pasantes-Morales, H. (1991). Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion.Neurosci. Lett. 130:233–236.

    Google Scholar 

  • Sánchez-Olea, R., Morán, J. and Pasantes-Morales, H. (1992). Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes.J. Neurosci. Res. 32:86–92.

    Google Scholar 

  • Sánchez-Olea, R., Pasantes-Morales, H., and Schousboe, A. (1993b). Neurons respond to hyposmotic conditions by an increase in intracellular free calcium.Neurochem. Res. 18:147–152.

    Google Scholar 

  • Sánchez-Olea, R., Peña, C., Morán, J. and Pasantes-Morales H. (1994). Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Cl transport in cultured astrocytes.Neurosci. Lett. 156:141–144.

    Google Scholar 

  • Sánchez-Olea, R., Morales-Mulia, M., Morán, J. and Pasantes-Morales, H. (1995a). Inhibition by polyunsaturated fatty acids of regulatory volume decrease and osmolyte fluxes in astrocytes in culture.Amer. J. Physiol. 269:C96-C192.

    Google Scholar 

  • Sánchez-Olea, R., Morales Mulia, M. Morán, J., and Pasantes-Morales, H. (1995b). Inhibition by dihydropyridines of regulatory volume decrease and osmolyte fluxes in cultured astrocytes is unrelated to extracellular calcium.Neurosci. Lett. 193:165–168.

    Google Scholar 

  • Sarkadi, B., and Parker, J.C. (1991). Activation of ion transport pathways by changes in cell volume.Biochim. Biophys. Acta 1071:407–427.

    Google Scholar 

  • Solis, J.M., Herranz, A.S., Herreras, O., Lerma, J., and Del Río, R.M. (1988). Does taurine act as an osmoregulatory substance in the rat brain.Neurosc. Lett. 91:53–58.

    Google Scholar 

  • Sterns, R.H., Baer, J., Ebersol, S. Thomas, D., Lohr, J.W., and Kamm, D.E. (1993). Organic osmolytes in acute hyponatremia.Am. J. Physiol. 264:F833-F836.

    Google Scholar 

  • Strange, K., Morrison, R. Heilig, C.W., Dipietro, S., and Gullans, S.R. (1991). Upregulation of inositol transport mediates inositol accumulation in hyperosmolar brain cells.Am. J. Physiol. 260:C784-C789.

    Google Scholar 

  • Strange, K., and Morrison, R. (1992). Volume regulation during recovery from chronic hypertonicity in brain glial cells.Am. J. Physiol. 263:C412-C419.

    Google Scholar 

  • Strange, K., Morrison, R., Shrode, L., and Putnanm, R. (1993). Mechanism and regulation of swelling-activated inositol efflux in brain glial cells.Am. J. Physiol. 265:C244-C256.

    Google Scholar 

  • Strange, K., Emma, F., Paredes, A., and Morrison, R. (1994). Osmoregulatory changes in myo-inositol content and Na/myi-inositol cotransport in rat cortical astrocytes. Glia 12:35–43.

    Google Scholar 

  • Thurston, J.H., Hauhart, R.D., and Dirco, J:A. (1980). Taurine: a role in osmotic regulation in mammalian brain and possible clinical significance.Life Sci. 26:1561–1568.

    Google Scholar 

  • Thurston, J.H., Hauhart, R.E. and Nelson, J.S. (1987). Adaptive decreases in amino acids (taurine in particular) creatine and electrolytes, prevent cerebral edema in chronically hyponatremic mice: rapid correction (experimental model of central pontine myelinolysis) causes dehydration and shrinkage of brain.Metab. Brain Dis. 2:223–241.

    Google Scholar 

  • Trachtman, J.H., Barbour, R., Sturman, J.A. and Finberg, L. (1988). Taurine and osmoregulation: taurine is a cerebral osmoprotective molecule in chronic hypernatremic dehydration.Ped. Res. 23:35–39.

    Google Scholar 

  • Trachtman, H. (1992). Cell volume regulation: a review of cerebral adaptive mechanisms and implications for clinical treatment of osmolal disturbances: II.Pediatr. Nephrol. 6:104–112.

    Google Scholar 

  • Trachtman, H., Futterweit, S., Hammer, E., Siegel, T.W., and Oates, P. (1991). The role of polyols in cerebral cell volume regulation in hypernatremic and hyponatremic states.Life Sci. 49:677–688.

    Google Scholar 

  • Valverde, M.A., Díaz, M., Sepúlveda, F.V., Gill, D.R., Hyde, S.C. and Higgins, C.F. (1992). Volume-regulated chloride channels associated with the human multidrug resistance P glycoprotein.Nature. 355:830–833.

    Google Scholar 

  • Verbalis, J.G., and Drutarosky, M.D. (1988). Adaptation to chronic hypoosmolality in rats.Kidney Int. 34:351–360.

    Google Scholar 

  • Verbalis, J.G., and Gullans, S.R. (1991). Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats.Brain Res. 567:274–282.

    Google Scholar 

  • Vitarella, D., DiRisio, D.J., Kimelberg, H.K., and Aschner, M. (1994). Potassium and taurine release are highly correlated with regulatory volume decrease in neonatal primary rat astrocyte cultures.J. Neurochem. 63:1143–1149.

    Google Scholar 

  • Walz, W. (1987). Swelling and potassium uptake in cultured astrocytes.Can. J. Physiol. Pharmacol. 65:1051–1057.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasantes-Morales, H. Volume regulation in brain cells: Cellular and molecular mechanisms. Metab Brain Dis 11, 187–204 (1996). https://doi.org/10.1007/BF02237957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02237957

Keywords

Navigation