Skip to main content
Log in

Intragenic regions of the murinePgk-1 locus enhance integration of transfected DNAs into genomes of embryonal carcinoma cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Introduction of recombinant genes into mammalian cells in culture has been an important procedure in establishing the molecular mechanisms of various cellular processes. The efficiency with which plasmid borne recombinant genes are expressed following stable integration into genomes of embryonal carcinoma cells is low. Using the P19 embryonal carcinoma cells as recipients, we found that constructs carrying the promoter and intragenic regions of the murinePgk-1 gene were expressed with high efficiency. This elevated expression was associated with increased numbers of copies of the transfected plasmid DNA stably associated with the genomes of recipient cells. The elevated plasmid copy numbers may result from enhanced ligation of transfected plasmids because cotransfected plasmids were also integrated in increased numbers. The enhanced integration and expression of transfected plasmids required active transcription through an intragenic region ofPgk-1, perhaps resulting in more recombinogenic plasmid DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Adra, C.N., Boer, P.H., and McBurney, M.W. (1987).Gene 60:65–74.

    Google Scholar 

  2. Boer, P.H., Potten, H., Adra, C.N., Jardine, K., Mullhofer, G., and McBurney, M.W. (1990).Biochem. Genet. 28:299–308.

    Google Scholar 

  3. McBurney, M.W., Sutherland, L.C., Adra, C.N., Leclair, B., Rudnicki, M.A., and Jardine, K. (1991).Nucleic Acids Res. 19:5755–5761.

    Google Scholar 

  4. McBurney, M.W., Fournier, S., Schmidt-Kastner, P.K., Jardine, K., and Craig, J. (1995).Somat. Cell Mol. Genet. 20:529–540.

    Google Scholar 

  5. Aronow, B., Lattier, D., Silbiger, R., Dusing, M., Hutton, J., Jones, G., Stock, J., McNeish, J., Potter, S., Witte, D., and Wiginton, D. (1989).Genes Dev. 3:1384–1400.

    Google Scholar 

  6. Aronow, B.J., Silbiger, R.N., Dusing, M.R., Stock, J.L., Yager, K.L., Potter, S.S., Hutton, J.J., and Wiginton, D.A. (1992).Mol. Cell. Biol. 12:4170–4185.

    Google Scholar 

  7. Ottavio, L., Chang, C.-D., Rizzo, M.-G., Travali, S., Casadevall, C., and Baserga, R. (1990).Mol. Cell. Biol. 10:303–309.

    Google Scholar 

  8. Sap, J., de Magistris, L., Stunnenberg, H., and Vennstrom, B. (1990).EMBO J. 9:887–896.

    Google Scholar 

  9. Ash, J., Ke, Y., Korb, M., and Johnson, L.F. (1993).Mol. Cell. Biol. 13:1565–1571.

    Google Scholar 

  10. Hurt, M.M., Bowman, T.L., and Marzluff, W.F. (1991).Mol. Cell. Biol. 11:2929–2936.

    Google Scholar 

  11. Lin, H., Yutzey, K.E., and Konieczny, S.F. (1991).Mol. Cell. Biol. 11:267–280.

    Google Scholar 

  12. Reid, L.H., Gregg, R.G., Smithies, O., and Koller, B.H. (1990).Proc. Natl. Acad. Sci. U.S.A. 87:4299–4303.

    Google Scholar 

  13. McBurney, M.W., and Rogers, B.J. (1982).Dev. Biol. 89:503–508.

    Google Scholar 

  14. Rudnicki, M.A., and McBurney, M.W. (1987). InTeratocarcinomas and Embryonic Stem Cells, A Practical Approach, (ed.) Robertson, E.J. (IRL Press, Oxford), pp. 19–49.

    Google Scholar 

  15. Chen, C., and Okayama, H. (1987).Mol. Cell. Biol. 7:2745–2752.

    Google Scholar 

  16. Southern, P.J., and Berg, P. (1982).J. Mol. Appl. Genet. 1:327–341.

    Google Scholar 

  17. Lupton, S.D., Brunton, L.L., Kalberg, V.A., and Overell, R.W. (1991).Mol. Cell. Biol. 11:3374–3378.

    Google Scholar 

  18. Vara, J.A., Portela, A., Ortin, J., and Jimenez, A. (1986).Nucleic Acids Res. 14:4617–4624.

    Google Scholar 

  19. Norton, P.A., and Coffin, J.M. (1985).Mol. Cell. Biol. 5:281–290.

    Google Scholar 

  20. Maniatis, T., Fritsch, T., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York), pp. 1–545.

    Google Scholar 

  21. Auffray, C., and Rougeon, F. (1980).Eur. J. Biochem. 107:303–314.

    Google Scholar 

  22. Adra, C.N., Ellis, N.A., and McBurney, M.W. (1988).Somat. Cell Mol. Genet. 14:69–81.

    Google Scholar 

  23. Pearson, B., Wolf, P.L., and Vazquez, J.A. (1963).Lab. Invest. 12:1249–1259.

    Google Scholar 

  24. Mori, N., Singer-Sam, J., Lee, C.Y., and Riggs, A.D. (1986).Gene 45:275–280.

    Google Scholar 

  25. Michaelson, A.M., Blake, C.C.F., Evans, S.T., and Orkin, S.H. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:6965–6969.

    Google Scholar 

  26. Gorman, C.M., Merlino, G.T., Willingham, M.C., Pastan, I., and Howard, B.H. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:6777–6781.

    Google Scholar 

  27. McBurney, M.W., and Strutt, B.J. (1980).Cell 21:357–364.

    Google Scholar 

  28. Leavitt, J., Gunning, P., Porreca, P., Ng, S-Y., Lin, C-S., and Kedes, L. (1984).Mol. Cell. Biol. 4:1961–1969.

    Google Scholar 

  29. Boer, P.H., Adra, C.N., Lau, Y.F., and McBurney, M.W. (1988).Mol. Cell. Biol. 7:107–3112.

    Google Scholar 

  30. Gewert, D.R., Coulombe, B., Castelino, M., Skup, D., and Williams, B.R.G. (1987).EMBO J. 6:651–657.

    Google Scholar 

  31. Ng, S-Y., Gunning, P., Eddy, R., Ponte, P., Leavitt, J., Shows, T., and Kedes, L. (1985).Mol. Cell. Biol. 5:2720–2732.

    Google Scholar 

  32. Loyter, A., Seangos, G., and Ruddle, F.H. (1982).Proc. Natl. Acad. Sci. U.S.A. 79:422–426.

    Google Scholar 

  33. Wigler, M., Sweet, R., Sim, G.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S., and Axei, R. (1977).Cell 16:777–785.

    Google Scholar 

  34. Dröge, P. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:2759–2763.

    Google Scholar 

  35. Kohwi, Y., and Panchenko, Y. (1993).Genes Dev. 7:1766–1778.

    Google Scholar 

  36. Thomas, B.J., and Rothstein, R. (1989).Cell 56:619–630.

    Google Scholar 

  37. Nickoloff, J.A. (1992).Mol. Cell. Biol. 12:5311–5318.

    Google Scholar 

  38. Heinzel, S.S., Krysan, P.J., Tran, C.T. and Calos, M.P. (1991).Mol. Cell. Biol. 11:2263–2272.

    Google Scholar 

  39. Krysan, P.J., and Calos, M.P. (1991).Mol. Cell. Biol. 11:1464–1472.

    Google Scholar 

  40. McWhinney, C., and Leffak, M. (1990).Nucleic Acids Res. 18:1233–1242.

    Google Scholar 

  41. Landry, S., and Zannis-Hadjopoulos, M. (1991).Biochem. Biophys. Acta 1088:234–244.

    Google Scholar 

  42. Krysan, P.J., Smith, J.G., and Calos, M.P. (1993).Mol. Cell. Biol. 13:2688–2696.

    Google Scholar 

  43. McArthur, J.G., and Stanners, C.P. (1991).J. Biol. Chem. 266:6000–6005.

    Google Scholar 

  44. Lue, N.F., and Kornberg, R.D. (1993).Proc. Natl. Acad. Sci. U.S.A. 90:8018–8022.

    Google Scholar 

  45. DePamphilis, M.L. (1993).Annu. Rev. Biochem. 62:29–63.

    Google Scholar 

  46. Hoeijmakers, J.H.J., Odijk, H., and Westerveld, A. (1987).Exp. Cell Res. 169:111–119.

    Google Scholar 

  47. Monroe, T.J., Muhlmann-Diaz, M.C., Kovach, M.J., Carlson, J.O., Bedford, J.S., and Beaty, B.J. (1992).Proc. Natl. Acad. Sci. U.S.A. 89:5725–5729.

    Google Scholar 

  48. Grosveld, F., Blom van Assendelft, G., Greaves, D.R., and Kollias, G. (1987).Cell 51:975–985.

    Google Scholar 

  49. Stief, A., Winter, D.M., Strätling, W.H., and Sippel, A.E. (1989).Nature 341:343–345.

    Google Scholar 

  50. Palmiter, R.D., Sandgren, E.P., Koeller, D.M., and Brinster, R.L. (1993).Mol. Cell. Biol. 13:5266–5275.

    Google Scholar 

  51. Okamoto, K., Okazawa, H., Okuda, A., Sakai, M., Muramatsu, M., and Hamada, H. (1990).Cell 60:461–472.

    Google Scholar 

  52. Schöler, H.R., Ruppert, S., Suzuki, N., Chowdhury, K., and Gruss, P. (1990).Nature 344:435–439.

    Google Scholar 

  53. Xin, J.-H., Cowie, A., Lachance, P., and Hassell, J.A. (1992).Genes Dev. 6:481–496.

    Google Scholar 

  54. Slack, R.S., Hamel, P.A., Bladon, T.S., Gill, R.M., and McBurney, M.W. (1993).Oncogene 8:1585–1591.

    Google Scholar 

  55. Linzer, D.I.H., and Levine, A.J. (1979).Cell 17:43–52.

    Google Scholar 

  56. Livingstone, L.R., White, A., Sprouse, J., Livanos, E., Jacks, T., and Tlsty, T.D. (1992).Cell 70:923–935.

    Google Scholar 

  57. Yin, Y., Tainsky, M.A., Bischoff, F.Z., Strong, L.C., and Wahl, G.M. (1992).Cell 70:937–948.

    Google Scholar 

  58. McBurney, M.W., Staines, W.A., Boekelheide, K., Parry, D., Jardine, K., and Pickavance, L. (1994).Dev. Dyn. 200:278–293.

    Google Scholar 

  59. Pari, G., Jardine, K., and McBurney, M.W. (1991).Mol. Cell. Biol. 11:4796–4803.

    Google Scholar 

  60. Pratt, M.A.C., Langston, A.W., Gudas, L.J., and McBurney, M.W. (1993).Differentiation 53:105–113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBurney, M.W., Fournier, S., Jardine, K. et al. Intragenic regions of the murinePgk-1 locus enhance integration of transfected DNAs into genomes of embryonal carcinoma cells. Somat Cell Mol Genet 20, 515–528 (1994). https://doi.org/10.1007/BF02255842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255842

Keywords

Navigation