Skip to main content
Log in

Morphology of neurons in the white matter of the adult human neocortex

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Neurons in the human cerebral cortical white matter below motor, visual, auditory and prefrontal orbital areas have been studied with the Golgi method, immunohistochemistry and diaphorase histochemistry. The majority of white matter neurons are pyramidal cells displaying the typical polarized, spiny dendritic system. The morphological variety includes stellate forms as well as bipolar pyramidal cells, and the expression of a certain morphological phenotype seems to depend on the position of the neuron. Spineless nonpyramidal neurons with multipolar to bitufted dendritic fields constitute less than 10% of the nuerons stained for microtubule associated protein (MAP-2). Only 3% of the MAP-2 immunoreactive neurons display nicotine adenine dinucleotide-diaphorase activity. The white matter pyramidal neurons are arranged in radial rows continuous with the columns of layer VI neurons. Neuron density is highest below layer VI, and decreases with increasing distance from the gray matter. White matter neurons are especially abundant below the primary motor cortex, and are least frequent below the visual cortex area 17. In contrast to other mammalian species, the white matter neurons in man are not only present during development, but persist throughout life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonini A, Shatz CJ (1990) Relation between putative transmitter phenotype and connectivity of subplate neurons during cerebral cortical development. Eur J Neurosci 2:744–761

    PubMed  Google Scholar 

  • Bayer SA, Altman J (1990) Development of layer I and the subplate in the rat neocortex. Exp Neurol 107:48–62

    PubMed  Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:267–272

    Google Scholar 

  • Bouras C, Magistretti PJ, Morrison JH (1986) An immunohistochemical study of six biologically active peptides in the human brain. Human Neurobiol 5:213–226

    Google Scholar 

  • Braitenberg V, Guglielmotti U, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283

    PubMed  Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig

    Google Scholar 

  • Campbell MJ, Morrison JA (1989) A monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex. J Comp Neurol 282:191–205

    Article  PubMed  Google Scholar 

  • Cavanagh M, Parnavelas JG (1990) Development of Neuropeptide Y (NPY) immunoreactive neurons in rat occipital cortex: a combined immunohistochemical and autoradiographic study. J Comp Neurol 284:637–645

    Google Scholar 

  • Chan-Palay V, Allen YS, Lang W, haesler U, Polak JM (1985) Cytology and distribution in normal human cerebral cortex of neurons immunoreactive with antisera against neuropeptide Y. J Comp Neurol 238:382–389

    PubMed  Google Scholar 

  • Chun JJM, Shatz CJ (1989a) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population J Comp Neurol 282:555–569

    PubMed  Google Scholar 

  • Chun JJM, Shatz CJ (1989b) The earliest generated neurons of the cat neocortex: characterization by MAP-2 and transmiter immunohistochemistry during fetal life. J Neurosci 9:1648–1667

    PubMed  Google Scholar 

  • Chun JJM, Nakamura MJ, Shatz CJ (1987) Transient cells of the developing mammalian telencephalon are petide immunoreactive neurons. Nature 325:617–620

    Article  PubMed  Google Scholar 

  • Das GD, Kreutzberg GW (1968) Evaluation of interstitial nerve cells in the central nervous system. A correlative study using acetylcholine esterase and Golgi techniques. Ergebn Anat Entwickl Gesch 41:1–59

    Google Scholar 

  • Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468

    PubMed  Google Scholar 

  • Economo C von, Koskinas GN (1925) Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Berlin

    Google Scholar 

  • Giguere M, Goldman-Rakic P (1988) Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of the rhesus monkey. J Comp Neurol 277:195–213

    Article  PubMed  Google Scholar 

  • Hendry SHC, Jones EG, Emson PC (1984) Morphology, distribution and synaptic relations of somatostatin- and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex. J Neurosci 4:2497–2517

    PubMed  Google Scholar 

  • Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9:1242–1253

    PubMed  Google Scholar 

  • Kostovic I, Molliver ME (1974) A new interpretation of the laminar development of the cerebral cortex: synaptogenesis in different layers of neopallium in the human fetus. Anat Rec 178:398

    Google Scholar 

  • Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J Neurocytol 9:219–242

    Article  PubMed  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of macaque monkey and human brain. J Comp Neurol 297:441–470

    PubMed  Google Scholar 

  • Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs F (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164:287–304

    Google Scholar 

  • Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat visual cortex: Cogeneration of subplate and marginal zone. J Neurosci 5:1062–1075

    PubMed  Google Scholar 

  • Marin-Padilla M (1988) Early ontogenesis of the human cerebral cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 7. Plenum, New York, 1–34

    Google Scholar 

  • McConnell SK, Gosh A, Shatz CJ (1990) Subplate neurons pioneer the first acon pathway from the cerebral cortex. Science 245:978–982

    Google Scholar 

  • Meyer G (1987) Forms and spatial arrangement of neurons in primary motor cortex of man. J Comp Neurol 228:226–244

    Article  Google Scholar 

  • Meyer G, Wahle P (1990) Morphology, distribution and quantitative development of neurons in the white matter of the human cortex. Soc Neurosci Abstr 16:332

    Google Scholar 

  • Meyer G, Gonzalez-Hernandez T, Ferres-Torres R (1989) The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Nerusicence 33:489–498

    Google Scholar 

  • Mizukawa K, Vincent SP, McGeer PL, McGeer EG (1988) Reduced nicotine adenine dinucleotide phosphate (NADPH)-diaphorase-positive neurons in cat cerebral white matter. Brain Res 461:274–281

    Article  PubMed  Google Scholar 

  • Mollgard K, Dziegielewska MK, Saunders NR, Zakut H, Soreq H (1988) Synthesis and localization of plasma proteins in the developing human brain. Dev Biol 128:207–221

    PubMed  Google Scholar 

  • Naegele JR, Barnstable CJ, Wahle P (1991) Expression of a novel 56 kD polypeptide by neurons in the subplate zone of developing cerebral cortex. Proc Natl Acad Sci USA 88:330–334

    PubMed  Google Scholar 

  • Peduzzi JD (1988) Genesis of GABA-immunoreactive neurons in the ferret visual cortex. J Neurosci 8:920–931

    PubMed  Google Scholar 

  • Pinto-Lord MC, Caviness VS Jr (1979) Determinants of cell shape and orientations: A comparative Golgi analysis of cell-axon interrelationships in developing neocortex of normal and reeler mice. J Comp Neurol 187:49–70

    Article  PubMed  Google Scholar 

  • Ramon y Cajal S (1991) Histologie du systeme nerveux de l'homme et des vertebres. Maloine, Paris

    Google Scholar 

  • Sandell JH (1986) NADPH diaphorase histochemistry in the macaque striate cortex. J Comp Neurol 251:388–397

    PubMed  Google Scholar 

  • Shatz CJ, Luskin MB (1986) The relationship between geniculocortical afferents and their cortical target cells during development of the cat's primary visual cortex. J Neurosci 6:3655–3668

    PubMed  Google Scholar 

  • Somogyi P, Hodgson A, Smith AD, Nunzi MG, Gorio A, Wu JY (1984) Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin-and cholecystokinin-immunoreactive material. J Neurosci 4:2590–2603

    PubMed  Google Scholar 

  • Van Eden CG, Mrzljak, L, Voorn P, Uylings HBM (1989) Prenatal development of GABAergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    Article  PubMed  Google Scholar 

  • Valverde F, Facal-Valverde MV (1988) Postnatal development of interstitial (subplate) cells in the white matter of the temporal cortex of kittens: a correlated Golgi and electron microscopic study. J Comp Neurol 268:168–192

    Article  Google Scholar 

  • Valverde F, Facal-Valverde MV, Santacana M, Heredia M (1989) Development and differentiation of early generated cells of sublayer VIb in somatosensory cortex of the rat: a correlated Golgi and autoradiographic study. J Comp Neurol 290:118–140

    PubMed  Google Scholar 

  • Wahle P, Meyer G (1987) Morphology and quantitative changes of transient NPY-ir neuronal populations during early postnatal development of the cat visual cortex. J Comp Neurol 261:165–192

    Article  PubMed  Google Scholar 

  • Wahle P, Meyer G (1989) Early postnatal development of vasoactive intestinal polypeptide and peptide histidine isoleucine immunoreactive structures in cat visual cortex. J Comp Neurol 282:215–248

    Article  PubMed  Google Scholar 

  • Wahle P, Meyer G, Wu JY, Albus K (1987) Morphology and axon terminal pattern of glutamate decarboxylase-immunoreactive cell types in the white matter of cat occipital cortex during early postnatal development. Dev Brain Res 36:53–61

    Article  Google Scholar 

  • Wahle P, Lübke J, Naegele JR (1990) Subplate-1: A molecular marker for excitatory neurons in subplate zone of developing cat cortex? Soc Neurosci Abstr 16:987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, G., Wahle, P., Castaneyra-Perdomo, A. et al. Morphology of neurons in the white matter of the adult human neocortex. Exp Brain Res 88, 204–212 (1992). https://doi.org/10.1007/BF02259143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259143

Key words

Navigation