Skip to main content
Log in

Strukturdifferenzierungen in Y-Chromosom vonDrosophila hydei: The unique morphology of the Y chromosomal lampbrush loopsThreads results from ‘coaxial shells’ formed by different satellite-specific subregions within megabase-sized transcripts

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The results of pulsed-field gel electrophoresis (PFGE) analysis and two-colour transcript fluorescencein situ hybridization (FISH) for the threeThreads-specific DNA satellitesYLII, YLI andrally are in support of long-range clustering of these sequence families within the subterminal region on the long arm of the Y chromosome ofDrosophila hydei. On the basis of the linear arrangement of at least four extended clusters of satellite-specific sequences, the loop morphology of wild-type and several mutantThreads can be explained by assumption of a singleThreads-specific transcription unit comprising about 5.1 Mb of repetitive DNA located between thePseudonucleolus and theNucleolus organizer. Transcription is unidirectional from thePseudonucleolus towards the terminally locatedNucleolus organizer. Transcripts most likelly start in front of or within the 3.2 Mb region ofYLII-related sequences, pass through subsequent blocks of 1.2 and 0.3 Mb ofYLI- andrally-related sequences, respectively, and cease within the region of a smaller block ofYLI-related repeats. The megabase-sized transcripts remain physically linked to the DNA axis and their extended satellite-specific regions from coaxial clouds or shells around the central DNA axis. In this way each cluster of earlier-transcribed sequences generates a cloud or shell on top of the later-transcribed ones. According to this model of ‘satellite-specific coaxial shells’ the tube-like morphology and other peculiarities of the Y chromosomal lampbrush loopsThreads can be explained as a result of satellitespecific RNA superstructures and/or formation of extended ribonucleoprotein (RNP) complexes between clusters of satellite-specific transcripts and specific proteins. On the basis of this model the specific morphology of severalThreads mutants can be interpreted as the result of large interstitial or terminal deletions that alter the total length of theThreads-specific transcription unit without exerting other major effects on principal features of the transcription process along theThreads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bridges CB (1916) Non-disjunction as a proof of the chromosome theory of heredity.Genetics 1: 1–52, 107–163.

    Google Scholar 

  • Brosseau GE (1960) Genetic analysis of the male fertility factors on the Y chromosome ofDrosophila melanogaster.Genetics 45: 257–274.

    Google Scholar 

  • Burgtorf C, Bünemann H (1994) Representative and efficient cloning of satellite DNAs based on PFGE pre-fractionation of restriction digests of genomic DNA.J Biochem Biophys Methods 28: 301–312.

    Article  PubMed  Google Scholar 

  • Callan HG (1986)Lampbrush Chromosomes. Berlin: Springer.

    Google Scholar 

  • Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from Yeast by orthogonal-field-alternation-gel-electrophoresis.Nucleic Acids Res 12: 5647–5664.

    PubMed  Google Scholar 

  • Fuller M (1993) Spermatogenesis inDrosophila. In: Bate M, Arias AM, eds.The Development of Drosophila Melanogaster, Vol. 1. New York: Cold Spring Harbor Laboratory Press pp 71–147.

    Google Scholar 

  • Gatti M, Pimpinelli S (1983) Cytological and genetic analysis of the Y chromosome ofDrosophila melanogaster. I. Organization of the fertility factors.Chromosoma 88: 349–373.

    Article  Google Scholar 

  • Gatti M, Pimpinelli S, Santini G (1976) Characterization ofDrosophila heterochromatin. I. Staining and decondensation with Hoechst 33258 and quinacrin.Chromosoma 57: 361–375.

    Article  Google Scholar 

  • Gepner, J., Hays TS (1993) A fertility region on the Y chromosome ofDrosophila melanogaster encodes a dynein microtubule motor.Proc Natl Acad Sci USA 90: 11132–11136.

    PubMed  Google Scholar 

  • Glätzer KH (1980) Regular substructures within homologous transcripts of spreadDrosophila germ cells.Exp Cell Res 125: 519–523.

    Article  PubMed  Google Scholar 

  • Glätzer KH (1984) Preservation of nuclear RNP antigens in male germ cell development ofDrosophila hydei.Mol Gen Genet 196: 236–243.

    Article  Google Scholar 

  • Glätzer KH, Bünemann H (1987) Transcripts of repetitive Y chromosomal sequences are involved in specific RNP structures in primary spermatocytes ofDrosophila hydei. In: Mohri H (ed)New Horizons in Sperm Cell Research. Tokyo: Japan Science Society Press, pp 107–115.

    Google Scholar 

  • Glätzer KH, Meyer GF (1981) Morphological aspects of the genetic activity in primary spermatocyte nuclei ofDrosophila hydei.Biol Cell 41: 165–172.

    Google Scholar 

  • Goldstein LSB, Hardy RW, Lindsley DL (1982) Structural genes in the Y chromosome ofDrosophila melanogaster.Proc Natl Acad Sci USA 79: 7405–7409.

    PubMed  Google Scholar 

  • Grond CJ, Siegmund I, Hennig W (1983) Visualization of a lampbrush loop-forming fertility gene inDrosophila hydei.Chromosoma 88: 50–56.

    Article  Google Scholar 

  • Hackstein JHP, Hochstenbach R (1995) The elusive fertility genes of Drosophila: the ultimate haven for selfish genetic elements.Trends Genet 11: 195–200.

    Article  PubMed  Google Scholar 

  • Hackstein JHP, Glätzer KH, Hulsebos TJM (1991) Genetic and cytogenetic analysis of the ‘Th-Ps’ region of the Y chromosome ofDrosophila hydei: evidence for dual functions of the loop-forming fertility genes?Mol Gen Genet 227: 293–305.

    Article  PubMed  Google Scholar 

  • Hardy RW, Tokuyasu KT, Lindsley DL (1981) Analysis of spermatogenesis inDrosophila melanogaster bearing deletions for Y-chromosome fertility genes.Chromosoma 83: 593–617.

    Article  PubMed  Google Scholar 

  • Hennig W (1978) The lampbrush Y chromosome of the fruit fly speciesDrosophila hydei (Diptera: Drosophilidae).Entomol Germ 4: 200–210.

    Google Scholar 

  • Hennig W (1985) Y chromosome function and spermatogenesis inDrosophila hydei.Adv Genet 23: 179–274.

    PubMed  Google Scholar 

  • Hennig W, Brand RC, Hackstein JHP et al. (1989) Y chromosomal fertility genes ofDrosophila: a new type of eukaryotic genes.Genome 31: 561–571.

    PubMed  Google Scholar 

  • Hess O (1965a) Strukturdifferenzierungen im Y-Chromosom vonDrosophila hydei und ihre Beziehungen zu Genaktivitäten. I. Mutanten der Funktionsstrukturen.Verhandl Deutsche Zool Ges, Zool Anz Supp 28: 156–163.

    Google Scholar 

  • Hess O (1965b) The effect of X-rays on the functional structures of the Y chromosome in spermatocytes ofDrosophila hydei.J Cell Biol 25: 169–173.

    Article  PubMed  Google Scholar 

  • Hess O (1965c) Strukturdifferenzierungen im Y-Chromosom vonDrosophila hydei und ihre Beziehungen zu Genaktivitäten. III. Sequenz und Lokalisation der Schleifenbildungsorte.Chromosoma 16: 222–248.

    Article  PubMed  Google Scholar 

  • Hess O (1967) Complementation of genetic activity in translocated fragments of the Y chromosome inDrosophila hydei.Genetics 56: 283–295.

    PubMed  Google Scholar 

  • Hess O, Meyer GF (1968) Genetic activities of the Y chromosome inDrosophila during spermatogenesis.Adv Genet 14: 171–223.

    PubMed  Google Scholar 

  • Huijser P, Hennig W (1987) Ribosomal DNA-related sequences in a Y chromosomal lampbrush loop ofDrosophila hydei.Mol Gen Genet 260: 441–451.

    Article  Google Scholar 

  • Hulsebos TJM, Hackstein JHP, Hennig W (1984) Lampbrush loop-specific protein ofDrosophila hydei.Proc Natl Acad Sci USA 81: 3404–3408.

    PubMed  Google Scholar 

  • Kennison J (1981) The genetic and cytological organization of the Y chromosome ofDrosophila melanogaster.Genetics 98: 529–548.

    Google Scholar 

  • Kennison J (1983) Analysis of Y-linked mutations to male sterility inDrosophila melanogaster.Genetics 103: 219–234.

    Google Scholar 

  • Lankenau DH, Huijser P, Jansen E, Miedema K, Hennig W (1990) DNA sequence comparison of micropia transposable elements fromDrosophila hydei andDrosophila melanogaster.Chromosoma 99: 111–117.

    Article  PubMed  Google Scholar 

  • Le M-H, Duricka D, Karpen GH (1995) Islands of complex DNA are widespread inDrosophila centric heterochromatin.Genetics 141: 283–303.

    PubMed  Google Scholar 

  • de Loos F, Dijkhof R, Grond CJ, Hennig W (1984) Lampbrush chromosome loop-specificity of transcript morphology in spermatocyte nuclei inDrosophila hydei.EMBO J 3: 2845–2849.

    Google Scholar 

  • Meyer GF (1963) Die Funktionsstrukturen des Y-Chromosoms in den Spermatocytenkernen vonDrosophila hydei, D. neohydei, D repleta und einigen anderenDrosophila-Arten.Chromosoma 14: 207–255.

    Article  Google Scholar 

  • Meyer GF (1968) Spermiogenese in normalen und Y-defizienten Männchen vonDrosophila melanogaster undD. hydei.Z Zellforsch 84: 141–175.

    Article  PubMed  Google Scholar 

  • Meyer GF, Hess O (1965) Strukturdifferenzierungen im Y-Chromosom vonDrosophila hydei und ihre Beziehungen zu Gen-Aktivitäten. II. Effekt der RNS-Synthese-Hemmung durch Actinomycin.Chromosoma 16: 249–270.

    Article  PubMed  Google Scholar 

  • Meyer GF, Hess O, Beermann W (1961) Phasenspezifische Funktionsstrukturen in Spermatocytenkernen vonDrosophila melanogaster und ihre Abhängigkeit vom Y-Chromosom.Chromosoma 12: 676–716.

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989)Molecular Cloning, A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Shield G, Sang JH (1977) Improved medium for culture ofDrosophila embryonic cells.Drosophila Information Service 52: 161.

    Google Scholar 

  • Sondermeijer PJA, Derksen JWM, Lubsen NH (1980) Established cell lines ofDrosphila hydei.In Vitro 16: 913–914.

    PubMed  Google Scholar 

  • Trapitz P, Wlaschek M, Bünemann H (1988) Structure and function of Y chromosomal DNA. II. Analysis of lampbrush loop associated transcripts in nuclei of primary spermatocytes ofDrosophila hydei byin situ hybridization.Chromosoma 96: 159–170.

    Article  PubMed  Google Scholar 

  • Trapitz, P. Bünemann H (1992) Preparation of high molecular weight DNA fromDrosophila adults for PFGE analysis.Trends Genet 8: 371–372.

    PubMed  Google Scholar 

  • Trapitz P Glätzer KH, Bünemann H (1992) Towards a physical map of the fertility genes on the heterochromatic Y chromosome ofDrosophila hydei: families of repetitive sequences transcribed on the lampbrush loopsNooses andThreads are organized in extended clusters of several hundred kilobases.Mol Gen Genet 235: 221–234.

    Article  PubMed  Google Scholar 

  • Williamson JH (1972) Allelic complementation between mutants in the fertility factors of the Y chromosome ofDrosophila melanogaster.Mol Gen Genet 119: 43–47.

    Article  PubMed  Google Scholar 

  • Wlaschek M, Awgulewitsch A, Bünemann H (1988) Structure and function of Y chromosomal DNA. I. Sequence organization and localization of four families of repetitive DNA on the Y chromosome ofDrosophila hydei.Chromosoma 96: 145–158.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Bünemann.

Additional information

Dedicated to Professor Dr. Oswald Hess on the occasion of his 65th birthday.

accepted for publication by H. C. Macgregor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurek, R., Trapitz, P. & Bünemann, H. Strukturdifferenzierungen in Y-Chromosom vonDrosophila hydei: The unique morphology of the Y chromosomal lampbrush loopsThreads results from ‘coaxial shells’ formed by different satellite-specific subregions within megabase-sized transcripts. Chromosome Res 4, 87–102 (1996). https://doi.org/10.1007/BF02259701

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02259701

Key words

Navigation