Skip to main content
Log in

Cerebellar choline acetyltransferase positive mossy fibres and their granule and unipolar brush cell targets: a model for central cholinergic nicotinic neurotransmission

  • Published:
Journal of Neurocytology

Summary

A subset of cerebellar mossy fibres is rich in choline acetyltransferase, the rate-limiting enzyme for the synthesis of acetylcholine. These choline acetyltransferase-positive mossy fibres are concentrated in the vestibulocerebellum and originate predominantly from the medial vestibular nucleus. The granular layer of the vestibulocerebellum is also enriched in unipolar brush cells, an unusual type of small neuron that form giant synapses with mossy fibres. In this immunocytochemical light and electron microscopic study, we explored whether choline acetyltransferase-positive mossy fibres innervate unipolar brush cells of the rat cerebellum. We utilized monoclonal antibodies to rat choline acetyltransferase of proven specificity, and immunoperoxidase procedures with 3,3′-diaminobenzidine tetrahydrochloride as the chromogen. A high density of choline acetyltransferase-positive fibres occurred in the nodulus and ventral uvula, where they showed an uneven, zonal distribution. Immunostained mossy fibre rosettes contained high densities of round synaptic vesicles and mitochondria. They formed asymmetric synaptic junctions with dendritic profiles of both granule cells and unipolar brush cells. The synaptic contacts between choline acetyltransferase-immunoreactive mossy fibres and unipolar brush cells were very extensive, and did not differ from synapses of choline acetyltransferase-negative mossy fibres with unipolar brush cells. Analysis of a total area of 1.25 mm2 of the nodulus from three rats revealed that 14.2% of choline acetyltransferase-immunoreactive mossy fibre rosettes formed synapses with unipolar brush cells profiles. Choline acetyltransferase-positive rosettes accounted for 21.7% of the rosettes forming synapses with unipolar brush cells. Thus, the present data demonstrate that unipolar brush cells are innervated by a heterogeneous population of mossy fibres, and that some unipolar brush cells receive cholinergic synaptic input from the medial vestibular nucleus. The ultrastructure of these synapses is compatible with the possibility that choline acetyltransferase-positive mossy fibres co-release acetylcholine and glutamate. As the granular layer of the vestibulocer-ebellum contains nicotinic binding sites, the choline acetyltransferase-positive mossy fibres may be a model for studying nicotinic neurotransmission in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, J. (1981) Heavy metal intensification of DAB-based HRP reaction product.Journal of Histochemistry and Cytochemistry,29, 775.

    Google Scholar 

  • Altman, J. &Bayer, S. A. (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex.Experimental Brain Research 29, 265–74.

    Google Scholar 

  • Armstrong, D. M., Saper, S. B., Levey, A. I., Wainer, H. &Terry, R. D. (1983) Distribution of cholinergic neurons in rat brain: demonstrated by immunocytochemical localization of choline acetyltransferase.Journal of Comparative Neurology 216, 53–68.

    Google Scholar 

  • Arai, R., Winsky, L., Arai, M. &Jacobowitz, D. M. (1991) Immunohistochemical localization of calretinin in the rat hindbrain.Journal of Comparative Neurology 310, 21–44.

    Google Scholar 

  • Aubert, I., Cécyre, D., Gauthier, S. &Quirion, R. (1992) Characterization and autoradiographic distribution of [3H]AF-DX 384 binding to putative muscarinic M2 receptors in the rat brain.European Journal of Pharmacology 217, 173–84.

    Google Scholar 

  • Barmack, N. H., Baughman, R. W. &Eckenstein, F. P. (1992a) Cholinergic innervation of the cerebellum of the rat, rabbit, cat, and monkey as revealed by choline acetyltransferase activity and immunohistochemistry.Journal of Comparative Neurology 317, 233–49.

    Google Scholar 

  • Barmack, N. H., Baughman, R. W., Eckenstein, F. P. &Shojaku, H. (1992b). Secondary vestibular cholinergic projection to the cerebellum of rabbit and rat as revealed by choline acetyltransferase immunohistochemistry, retrograde and orthograde tracers.Journal of Comparative Neurology 317, 250–70.

    Google Scholar 

  • Barmack, N. H., Baughman, R. W., Errico, P. &Shojaku, H. (1993) Vestibular primary afferent projection to the cerebellum of the rabbit.Journal of Comparative Neurology 327, 521–34.

    Google Scholar 

  • Bekenstein, J. W. &Wooten, G. F. (1989) Hemicholinium-3 binding sites in rat brain: a quantitative autoradiographic study.Brain Research 481, 97–105.

    Google Scholar 

  • Berthié, B. &Axelrad, H. (1994) Granular layer collaterals of the unipolar brush cell axon display rosette-like excrescences. A Golgi study in the rat cerebellar cortex.Neuroscience Letters 167, 161–5.

    Google Scholar 

  • Boegman, R., Parent, A. &Hawkes, R. (1988) Zonation in the rat cerebellar cortex: patches of high acetylcholinesterase activity in the granular layer are congruent with Purkinje cell compartments.Brain Research 448, 237–51.

    Google Scholar 

  • Braak, E. &Braak, H. (1993) The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity.Neuroscience Letters 154, 199–202.

    Google Scholar 

  • Brodal, A. &Drabløs, P. A. (1963) Two types of mossy fibre terminals in the cerebellum and their regional distribution.Journal of Comparative Neurology 121, 173–87.

    Google Scholar 

  • Brown, W. J. &Palay, S. L. (1962) Acetylcholinesterase activity in certain glomeruli and Golgi cells of the granular layer of the rat's cerebellar cortex.Zeitschrifts für Anatomie und Entwicklungs-Geschichte 137, 317–34.

    Google Scholar 

  • Butcher, L. L. (1995) Cholinergic neurons and networks. InThe Rat Central Nervous System (Edited byPaxinos, G.) pp. 1003–15. San Diego: Academic Press.

    Google Scholar 

  • Caffé, A. R., Hawkins, R. K. &Dezeeuw, C. I. (1996). Coexistence of choline acetyltransferase and GABA in axon terminals in the dorsal cap of the rat inferior olive.Brain Research 724, 136–40.

    Google Scholar 

  • Chan-Palay V. &Palay, S. L. (1971) The synapseen marron between Golgi type II neurons and mossy fibres in the rat's cerebellar cortex.Zeitschrifts für Anatomie und Entwicklungs-Geschichte 133, 274–87.

    Google Scholar 

  • Clarke, P. B. S., Schwartz, R. D., Paul, S. M., Pert, C. B. &Pert, A. (1985) Nicotinic binding in rat brain: autoradiographic comparison of3H-acetylcholine,3H-nicotine and125I-alpha-bungarotoxin.Journal of Neuroscience 5, 1307–15.

    Google Scholar 

  • Cozzari, C., Howard, J. &Hartman, B. (1990) Analysis of epitopes on choline acetyltransferase (ChAT) using monoclonal antibodies.Society for Neuroscience Abstracts 16, 91.6.

    Google Scholar 

  • Cozzi, M. G., Rosa, P., Greco, A., Hille, A., Huttner, W. B., Zanini, A. &De Camilli, P. (1989) Immunohistochemical localization of secretogranin II in the rat cerebellum.Neuroscience 28, 423–41.

    Google Scholar 

  • Crepel, F. &Dhanjal, S. S. (1982) Cholinergic mechanisms and neurotransmission in the cerebellum of the rat. Anin vitro study.Brain Research 244, 59–86.

    Google Scholar 

  • Csillik, B., Joo, F. &Kasa, P. (1963) Cholinesteraseactivity of mossy fibre apparatus.Journal of Histochemistry and Cytochemistry 11, 113–14.

    Google Scholar 

  • Dow, R. S. (1936) The fibre connections of the posterior parts of the cerebellum in the rat and cat.Journal of Comparative Neurology 63, 527–47.

    Google Scholar 

  • Dunn, M. E., Vetter, D. E., Berrebi, A. S., Krider, H. H. &Mugnaini, E. (1996) The mossy-fibre granule cellcartwheel cell system in the mammalian cochlear nuclear complex. InAdvances in Speech, Hearing and Language Processing (edited byAinsworth, C. W. A.) pp. 63–87. Woodbridge, CN: JAI Press Inc.

    Google Scholar 

  • Floris, A., Diño, M. R., Jacobowitz, D. M. &Mugnaini, E. (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretininpositive: a study by light and electron microscopic immunocytochemistry.Anatomy and Embryology 189, 495–520.

    Google Scholar 

  • Friedrich, V. L. Jr &Mugnaini, E. (1981) Preparation of neural tissues for electron microscopy. InNeuroanatomical Tract-Tracing Methods (Edited byHeimer, L. &Robards, M. J.) pp. 345–75. New York: Plenum Press.

    Google Scholar 

  • Frostholm, A. &Rotter, A. (1986) The ontogeny of α-bungarotoxin binding sites in the rat cerebellar cortex: an autoradiographic study.Proceedings of the Western Pharmacological Society 9, 249–53.

    Google Scholar 

  • Garthwaite, J. &Brodbelt, J. R. (1990) Glutamate as the principal mossy fibre transmitter in rat cerebellum: pharmacological evidence.European Journal of Neuroscience 2, 177–80.

    Google Scholar 

  • Hámori, J. &Szentágothai, J. (1966) Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscopic study.Experiumental Brain Research 2, 65–81.

    Google Scholar 

  • Harris, J., Moreno, S., Shaw, G. &Mugnaini, E. (1993) Unusual neurofilament composition in cerebellar unipolar brush neurons.Journal of Neurocytology 22, 1039–59.

    Google Scholar 

  • Hawkes, R. &Turner, R. W. (1994) Compartmentation of NADPH-diaphorase activity in mouse cerebellar cortex.Journal of Comparative Neurology 346, 499–516.

    Google Scholar 

  • Hill, J. A., Zoli, M., Bourgeois, J.-P. &Changeux, J.-P. (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the β2-subunit.Journal of Comparative Neurology 13, 1551–68.

    Google Scholar 

  • Hockfield, S. (1987) A Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization.Science 237, 67–70.

    Google Scholar 

  • Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M. &Vaughn, J. E. (1983) Organization and morphological characteristics of cholinergic neurons: an immunocytochemical study with a monoclonal antibody to choline acetyltransferase.Brain Research 266, 97–119.

    Google Scholar 

  • Hunt, S. &Schmidt, J. (1978) Some observations on the binding patterns of α-bungarotoxin in the central nervous system of rat.Brain Research 258, 115–19.

    Google Scholar 

  • Jaarsma, D., Wenthold, R. J. &Mugnaini, E. (1995a) Glutamate receptor subunits at mossy fibre-unipolar brush cell synapses: light and electron microscopic immunocytochemical study in cerebellar cortex of rat and cat.Journal of Comparative Neurology 357, 45–160.

    Google Scholar 

  • Jaarsma, D., Levey, A. I., Frostholm, A., Rotter, A. &Voogd, J. (1995b) Light-microscopic distribution and parasagittal organisation of muscarinic receptors in rabbit cerebellar cortex.Journal of Chemical Neuroanatomy 9, 241–59.

    Google Scholar 

  • Jaarsma, D., Ruigrok, T. J. H., Caffé, R., Cozzari, C., Levey, A. I., Mugnaini, E. & Voogd, J. (1997) Cholinergic innervation and receptors in the cerebellum.Progress in Brain Research, in press.

  • Kan, K-S. K., Chao, L-P. &Eng, L. F. (1978) Immunohistochemical localization of choline acetyltransferase in rabbit spinal cord and cerebellum.Brain Research 146, 221–9.

    Google Scholar 

  • Kan, K-S. K., Chao, L-P. &Forno, L. S. (1980) Immunohistochemical localization of choline acetyltransferase in the human cerebellum.Brain Research 193, 165–71.

    Google Scholar 

  • King, J. S., Cummings, S. L. &Bishop, G. A. (1992) Peptides in Cerebellar Circuits.Progress in Neurobiology 39, 423–42.

    Google Scholar 

  • Korte, G. &Mugnaini, E. (1979) The cerebellar projection of the vestibular nerve in cat.Journal of Comparative Neurology 184, 256–78.

    Google Scholar 

  • Kosaka, T., Tauchi, M. &Dahl, J. L. (1988) Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat.Experimental Brain Research 70, 605–17.

    Google Scholar 

  • Lauterborn, J. C., Isackson, P. J., Montalvo, R. &Gall, C. M. (1993)In situ hybridisation localisation of choline acetyltransferase mRNA in adult rat brain and spinal cord.Molecular Brain Research 17, 59–69.

    Google Scholar 

  • Lavoie, B. &Parent, A. (1994) Pedunculopontine nucleus in squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons.Journal of Comparative Neurology 344, 190–209.

    Google Scholar 

  • Levey, A. I., Kitt, C. A., Simonds, W. F., Price, D. L. &Brann, M. R. (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies.Journal of Neuroscience 11, 3218–26.

    Google Scholar 

  • McGehee, D. S., Heath, M. J. S., Gelber, S., Devay, P. &Role, L. W. (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors.Science 269, 1692–6.

    Google Scholar 

  • Monteiro, R. A. F. (1986) Critical analysis on the nature of synapsesen marron of the cerebellar cortex.Journal für Hirnforschung 27, 567–76.

    Google Scholar 

  • Mugnaini, E. (1972) The histology and cytology of the cerebellar cortex. InThe Comparative Anatomy and Histology of the Cerebellum. The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex (edited byLarsell, O. &Jansen, J.) pp. 201–64. Minneapolis: University of Minnesota press.

    Google Scholar 

  • Mugnaini, E. &Floris, A. (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex.Journal of Comparative Neurology 339, 174–80.

    Google Scholar 

  • Mugnaini, E., Floris, A. &Wright-Goss, M. (1994) Extraordinary synapses of the unipolar brush cell: an electron microscopic study in the rat cerebellum.Synapse 16, 284–311.

    Google Scholar 

  • Mugnaini, E., Diño, M. R. & Jaarsma D. (1997) The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry.Progress in Brain Research, in press.

  • Munoz, D. G. (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity.Brain Research 528, 335–8.

    Google Scholar 

  • Neustadt, A., Frostholm, A. &Rotter A. (1988) Topographical distribution of muscarinic cholinergic receptors in the cerebellar cortex of the mouse, rat, guinea pig, and rabbit: a species comparison.Journal of Comparative Neurology 272, 317–30.

    Google Scholar 

  • Ojima, H., Kawajiri, S-I. &Yamasaki T. (1989) Cholinergic innervation of the rat cerebellum: qualitative and quantitative analyses of elements immunoreactive to a monoclonal antibody against choline acetyltransferase.Journal of Comparative Neurology 290, 41–52.

    Google Scholar 

  • Ottersen, O. P., Laake, J. H. &Storm-Mathisen, J. (1990) Demonstration of a releasable pool of glutamate in cerebellar mossy and parallel fibre terminals by means of light and electron microscopic immunocytochemistry.Archives Italaliennes de Biologie 128, 111–25.

    Google Scholar 

  • Palay, S. L. &Chan-Palay, V. (1974)Cerebellar Cortex: Cytology and Organization. New York: Springer.

    Google Scholar 

  • Résibois, A. &Rogers, J. H. (1989) Calretinin in rat brain: an immunohistochemical study.Neuroscience 31, 101–34.

    Google Scholar 

  • Rossi, D. J., Mugnaini, E. &Slater, N. T. (1994) Glutamate receptor-mediated transmission at a novel giant synapse in rat cerebellum: the mossy fibre-unipolar brush cell synapse.Brain Research Association Abstracts 11, 29.

    Google Scholar 

  • Rossi, D. J., Alford, S., Mugnaini, E. &Slater, N. T. (1995) Time course of transmission at a giant glutamatergic synapse in cerebellum: the mossy fibre-unipolar brush cell synapse.Journal of Neurophysiology 74, 24–42.

    Google Scholar 

  • Rotter, A., Birdsall, N. J. M., Fields, P. M. &Raisman, G. (1979) Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H]propylbenzylcholine mustard in the midbrain and hindbrain.Brain Research Reviews 1, 167–83.

    Google Scholar 

  • Rubertone, J. A., Mehler, W. R. &Voogd, J. (1995) The vestibular nuclear complex. InThe Rat Central Nervous System (edited byPaxinos, G.) pp. 773–93. San Diego: Academic Press.

    Google Scholar 

  • Shute, C. C. D. &Lewis, P. R. (1965) Cholinesterasecontaining pathways of the hindbrain: afferent cerebellar and centrifugal cochlear fibres.Nature 205, 242–6.

    Google Scholar 

  • Silver, A. (1967) Cholinesterases of the central nervous system with special reference to the cerebellum.International Reviews of Neurobiology 10, 57–109.

    Google Scholar 

  • Silver, R. A., Traynelis, S. F. &Cull-Candy, S. G. (1992): Rapid-time course miniature and evoked excitatory current at cerebellar synapsesin situ.Nature 355, 163–6.

    Google Scholar 

  • Sivilotti, L. &Colquhoun, D. (1995) Acetylcholine receptors: too many channels, too few functions.Science 269, 1681–2.

    Google Scholar 

  • Slater, N. T., Rossi, D. J., Diño, M. R., Jaarsma, D. &Mugnaini, E. (1996a) Physiology and ultrastructure of unipolar brush cells in the vestibulocerebellum. InNeurochemistry of the Vestibular System (edited byBeitz, A. &Anderson, J.). Orlando, FL: CRC Press, Inc., in press.

    Google Scholar 

  • Slater, N. T., Rossi D. J. & Kinney, G. A. (1996b) Physiology of transmission at a giant glutamatergic synapse in the cerebellum.Progress in Brain Research, in press.

  • Somogyi, P., Halashy, K., Somogyi, J., Stormmathisen, J. &Ottersen, O. P. (1986) Quantitation of immunogold labelling reveals enrichment of glutamate in mossy and parallel fibre terminals in cat cerebellum.Neuroscience 19, 1045–50.

    Google Scholar 

  • Spencer, D. G., Horváth, E. &Traber, J. (1986) Direct autoradiographic determination of M1 and M2 muscarinic acetylcholine receptor distribution in the rat brain: relation to cholinergic nuclei and projections.Brain Research 380, 59–68.

    Google Scholar 

  • Swanson, L. W., Simmons, D. M., Whitting, P. J. &Lindstrom, J. (1987) Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system.Journal of Neuroscience 7, 3334–42.

    Google Scholar 

  • Vilaró, M. T., Wiederhold, K.-H., Palacios, J. M. &Mengod, G. (1992) Muscarinic M2 receptor mRNA expression and receptor binding in cholinergic and noncholinergic cells in the rat brain: a correlative study usingin situ hybridization histochemistry and receptor autoradiography.Neuroscience 47, 367–93.

    Google Scholar 

  • Voogd, J., Jaarsma, D. &Marani, E. (1996)The Cerebellum: Chemoarchitecture and Anatomy. InHandbook of Chemical Neuroanatomy Vol. XX (edited byBjörklund, A. &Hökfelt, T.) pp. 1–370. Amsterdam: Elsevier.

    Google Scholar 

  • Wada, E., Wada, K., Boulter, J., Deneris, E., Heinemann, S., Patrick, J. &Swanson, L. W. (1989) The distribution of alpha 2, alpha 3, alpha 4, and beta 2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat.Journal of Comparative Neurology 284, 314–35.

    Google Scholar 

  • Wylie, D. R., De Zeeuw, C. I., Digiorgi, P. L. &Simpson, J. I. (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit.Journal of Comparative Neurology 349, 448–63.

    Google Scholar 

  • Woolf, N. J. (1991) Cholinergic systems in mammalian brain and spinal cord.Progress in Neurobiology 37, 474–524.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

25th Anniversary Issue

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaarsma, D., Diño, M.R., Cozzari, C. et al. Cerebellar choline acetyltransferase positive mossy fibres and their granule and unipolar brush cell targets: a model for central cholinergic nicotinic neurotransmission. J Neurocytol 25, 829–842 (1996). https://doi.org/10.1007/BF02284845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284845

Keywords

Navigation