Skip to main content
Log in

Nerve conduction block utilising high-frequency alternating current

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

High-frequency alternating current (AC) waveforms have been shown to produce a quickly reversible nerve block in animal models, but the parameters and mechanism of this block are not well understood. A frog sciatic nerve/gastrocnemius muscle preparation was used to examine the parameters for nerve conduction block in vivo, and a computer simulation of the nerve membrane was used to identify the mechanism for block. The results indicated that a 100% block of motor activity can be accomplished with a variety of waveform parameters, including sinusoidal and rectangular waveforms at frequencies from 2 kHz to 20 kHz. A complete and reversible block was achieved in 34 out of 34 nerve preparations tested. The most efficient waveform for conduction block was a 3–5 kHz constant-current biphasic sinusoid, where block could be achieved with stimulus levels as low as 0.01 μC phase−1. It was demonstrated that the block was not produced indirectly through fatigue. Computer simulation of high-frequency AC demonstrated a steady-state depolarisation of the nerve membrane, and it is hypothesised that the conduction block was due to this tonic depolarisation. The precise relationship between the steady-state depolarisation and the conduction block requires further analysis. The results of this study demonstrated that high-frequency AC can be used to produce a fast-acting, and quickly reversible nerve conduction block that may have multiple applications in the treatment of unwanted neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Gawad, M., Boyer, S., Sawan, M., andElhilali, M. M. (2001): ‘Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs’,J. Urol.,166, pp. 728–733

    Google Scholar 

  • Accornero, N., Giorgio, B., Lenzi, G. L., andManfredi, M. (1977): ‘Selective activation of peripheral nerve fibre groups of different diameter by triangular shaped stimulus pulses’,J. Physiol.,273, pp. 539–560

    Google Scholar 

  • Agnew, W. F., McCreery, D. B., Yuen, T. G., andBullara, L. A. (1990): ‘Local anaesthetic block prevents against electrically-induced damage in peripheral nerve’,J. Biomed. Eng.,12, pp. 301–308

    Google Scholar 

  • Baratta, R., Ichie, M., Hwang, S. K., andSolomonow, M. (1989): ‘Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrodes’,IEEE Trans. Biomed. Eng.,36, pp. 836–843

    Article  Google Scholar 

  • Bowman, B. R., andMcNeal, D. R. (1986): ‘Response of single alpha motoneurons to high-frequency pulse trains’,Appl. Neurophysiol.,49, pp. 121–138

    Google Scholar 

  • Campbell, B., andWoo, M. Y. (1966): ‘Further studies on asynchronous firing and block of peripheral nerve conduction’,Bull. Los Ang. Neurol. Soc.,31, pp. 63–71

    Google Scholar 

  • Cattel, M., andGerard, R. W. (1935): ‘The ‘inhibitory’ effect of high-frequency stimulation and the excitation state of nerve’,J. Physiol.,83, pp. 407–415

    Google Scholar 

  • Fang, Z. P., andMortimer, J. T. (1991): ‘Selective activation of small motor axons by quasi-trapezoidal current pulses’,IEEE Trans. Biomed. Eng.,38, pp. 168–174

    Google Scholar 

  • Fields, R. W., O'Donnell, R. P., andTacke, R. B. (1979): ‘Effects of variations in rectangular pulse duty cycle and intensity on pulsating direct current electro-analgesia of cat tooth pulp’,Arch. Oral Biol.,24, pp. 509–514

    Google Scholar 

  • Forbes, A., andRice, L. H. (1929): ‘Quantitative studies of the nerve impulse IV. Fatigue of the peripheral nerve’,Am. J. Physiol.,90, pp. 119–145

    Google Scholar 

  • Grill, W. M., andMortimer, J. T. (1997): ‘Inversion of the current-distance relationship by transient depolarization’,IEEE Trans. Biomed. Eng.,44, pp. 1–9

    Article  Google Scholar 

  • Hassouna, M., Duval, F., Li, J. S., Latt, R., Sawan, M., andElhilali, M. M. (1992): ‘Effect of early bladder stimulation on spinal shock: experimental approach’,Urology,40, pp. 563–573

    Article  Google Scholar 

  • Hines, M. L., andCarnevale, N. T. (1997): ‘The NEURON simulation environment’,Neur. Comput.,9, pp. 1179–1209

    Google Scholar 

  • Huang, C. Q., Shepherd, R. K., Seligman, P. M., andClark, G. M. (1998): ‘Reduction in excitability of the auditory nerve following acute electrical stimulation at high stimulus rates: III. Capacitive versus non-capacitive coupling of the stimulating electrodes’,Hear. Res.,116, pp. 55–64

    Article  Google Scholar 

  • Huang, C. Q., andShepherd, R. K. (1999): ‘Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates. IV. Effects of stimulus intensity’,Hear. Res.,132, pp. 60–68

    Article  Google Scholar 

  • Hurlbert, R. L., Tator, C. H., andTheriault, E. (1993): ‘Dose-response study of the pathological effects of chronically applied direct current stimulation on the normal rat spinal cord’,J. Neurosurg.,79, pp. 905–916

    Google Scholar 

  • Ishigooka, M., Hashimoto, T., Sasagawa, I., Izumiya, K. andNakada, T. (1994): ‘Modulation of the urethral pressure by high-frequency block stimulus in dogs’,Eur. Urol. 25, pp. 334–337

    Google Scholar 

  • Javel, E., Tong, Y. C., Shepherd, R. K., Clark, G. M. (1987): ‘Responses of cat auditory nerve fibers to biphasic electrical current pulses’,Ann. Otol. Rhinol. Laryngol. Suppl.,128, pp. 26–30

    Google Scholar 

  • Knedlitschek, G., Noszvai-Nagy, M., Meyer-Waarden, H., Schimmelpeeng, J., Weibezahn, K. F., andDertinger, H. (1994): ‘Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities’,Radiat. Environ. Biophys.,33, pp. 141–147

    Article  Google Scholar 

  • Krauthamer, V., andCrosheck, T. (2002): ‘Effects of high-rate electrical stimulation upon firing in modelled and real neurons’,Med. Biol. Eng. Comput.,40, pp. 360–366

    Article  Google Scholar 

  • Li, J. S., Hassouna, M., Sawan, M., Duval, F., andElhilali, M. M. (1995): ‘Long-term effect of sphincteric fatigue during bladder neurostimulation’,J. Urology,153, pp. 238–242

    Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G., andBullara, L. (1990): ‘Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation’,IEEE Trans. Biomed. Eng.,37, pp. 996–1001

    Article  Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G., andBullara, L. (1992): ‘Damage in peripheral nerve from continuous electrical stimulation: comparison of two stimulus waveforms’,Med. Biol. Eng. Comput.,30, pp. 109–114

    Google Scholar 

  • McCreery, D. B., Agnew, W. F., Yuen, T. G. H., Bullara, L. A. (1995): ‘Relationship between stimulus amplitude, stimulus frequency and neural damage during electrical stimulation of sciatic nerve of cat’,Med. Biol. Eng. Comput.,33, pp. 426–429

    Google Scholar 

  • McIntyre, C. C., andGrill, W. M. (1998): ‘Sensitivity analysis of a model of mammalian neural membrane’,Biol. Cybern.,79, pp. 29–37

    Article  Google Scholar 

  • McIntyre, C. C., Richardson, A. G., andGrill, W. M. (2002): ‘Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle’,J. Neurophysiol.,87, pp. 995–1006

    Google Scholar 

  • McNeal, D. R. (1976): ‘Analysis of a model for excitation of myelinated nerve’,IEEE Trans. Biomed. Eng.,23, pp. 329–337

    Google Scholar 

  • Mitchell, A., Miller, J. J., Finger, P. A., Heller, J. W., Raphael, Y., andAltschuler, R. A. (1997): ‘Effects of chronic high-rate electrical stimulation on the cochlea and eighth nerve in the deafened guinea pig’,Hear. Res.,105, pp. 30–43

    Article  Google Scholar 

  • Mortimer, J. T. (1981): ‘Motor prostheses’, inBrookhart, J. M., Mountcastle, V. B., Brooks, V. B., andGeiger, S. R. (Eds): ‘Handbook of physiology, section 1: the nervous system—vol. II motor control, Part 1’ (Amer. Physiol. Soc., Bethesda, USA, 1981), Chap. 5, pp. 155–187

    Google Scholar 

  • Petruska, J. C., Hubscher, C. H., andJohnson, R. D. (1998): ‘Anodally focused polarization of peripheral nerve allows discrimination of myelinated and unmyelinated fiber input to brainstem nuclei’,Exp. Brain Res.,121, pp. 379–390

    Article  Google Scholar 

  • Pudenz, R. H., Bullara, L. A., Jacques, S., andHambrecht, F. T. (1975): ‘Electrical stimulation of the brain. III. The neural damage model’,Surg. Neurol.,4, pp. 389–400

    Google Scholar 

  • Ranck, J. B., andBement, S. (1965): ‘The specific impedance of the dorsal columns of the cat: an anisotropic medium’,Exp. Neurol.,11, pp. 451–463

    Article  Google Scholar 

  • Ranck, J. B. (1975): ‘Which elements are excited in electrical stimulation of mammalian central nervous system: a review’,Brain Res.,98, pp. 417–440

    Article  Google Scholar 

  • Rattay, F. (1990): ‘Electrical nerve stimulation: theory, experiments and applications’, (Springer-Verlag, Wien, New York, 1990), pp. 183–185

    Google Scholar 

  • Reboul, J., andRosenblueth, A. (1939): ‘The action of alternating currents upon the electrical excitability of nerve’,Am. J. Physiol.,125, pp. 205–215

    Google Scholar 

  • Richardson, A. G., McIntyre, C. C., andGrill, W. M. (2000): ‘Modelling the effects of electric fields on nerve fibres: influence of the myelin sheath’,Med. Biol. Eng. Comput. 38, pp. 438–446

    Article  Google Scholar 

  • Sassen, M., andZimmermann, M. (1973): ‘Differential blocking of myelinated nerve fibers by transient depolarization’,Pflugers Arch.,341, pp. 179–195

    Article  Google Scholar 

  • Sawan, M., Hassouna, M. M., Li, J. S., Duval, F., andElhilali, M. M. (1996): ‘Stimulator design and subsequent stimulation parameter optimization for controlling micturition and reducing urethral resistance’,IEEE Trans. Rehabil. Eng.,4, pp. 39–46

    Article  Google Scholar 

  • Shaker, H. S., Tu, L. M., Robin, S., Arabi, K., Hassouna, M., Sawan, M., andElhilali, M. M. (1998): ‘Reduction of bladder outlet resistance by selective sacral root stimulation using high-frequency blockade in dogs: an acute study’,J. Urol.,160, pp. 901–907

    Google Scholar 

  • Solomonow, M., Eldred, E., Lyman, J., andFoster, J. (1983): ‘Control of muscle contractile force through indirect high-frequency stimulation’,Am. J. Phys. Med.,62, pp. 71–82

    Google Scholar 

  • Solomonow, M. (1984): ‘External control of the neuromuscular system’,IEEE Trans. Biomed. Eng.,31, pp. 752–763

    Google Scholar 

  • Sweeney, J. D., andMortimer, J. T. (1986): ‘An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials’,IEEE Trans. Biomed. Eng.,33, pp. 541–549

    Google Scholar 

  • Tanner, J. A. (1962): ‘Reversible blocking of nerve conduction by alternating current excitation’,Nature,195, pp. 712–713

    Google Scholar 

  • Tykocinski, M., Shepherd, R. K., andClark, G. M. (1995): ‘Reduction in excitability of the auditory nerve following electrical stimulation at high stimulus rates’,Hear. Res.,88, pp. 124–142

    Article  Google Scholar 

  • Warman, E. N., Grill, W. G., andDurand, D. (1992): ‘Modeling the effects of electric fields on nerve fibers: determination of excitation thresholds’,IEEE Trans. Biomed. Eng.,39, pp. 1244–1254

    Article  Google Scholar 

  • Wedensky, N. E. (1903): ‘Die Erregung, Hemmung und Narkose’,Pfluger's Arch.,100, p. 1

    Google Scholar 

  • Whitman, J. G., andKidd, C. (1975): ‘The use of direct current to cause selective block of large fibres in peripheral nerves’,Br. J. Anaesth,47, pp. 1123–1132

    Google Scholar 

  • Williamson, R. (1999): ‘A new generation neural prosthesis’, PhD dissertation, University of Alberta, Edmonton, Alberta, Canada

    Google Scholar 

  • Woo, M. Y., and Campbell, B. (1964): ‘Asynchronous firing and block of peripheral nerve conduction by 20 Kc alternating current’,Bull. Los Angeles Neurol. Soc.,29, pp. 87–94

    Google Scholar 

  • Yarowsky, P. J., andIngvar, D. H. (1981): ‘Neuronal activity and energy metabolism’,Fed. Proc.,40, pp. 2353–2362

    Google Scholar 

  • Yuen, T. G., Agnew, W. F., andBullara, L. A. (1984): ‘Histopathological evaluation of dog sacral nerve after chronic electrical stimulation for micturition’,Neurosurg.,14, pp. 449–455

    Google Scholar 

  • Zhou, B., Baratta, R., andSolomonow, M. (1987): ‘Manipulation of muscle force with various firing rates and recruitment control strategies’,IEEE Trans. Biomed. Eng.,34, pp. 128–139

    Google Scholar 

  • Zimmermann, M. (1968): ‘Selective activation of C-fibers’,Pflugers Archiv.,301, pp. 329–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. L. Kilgore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilgore, K.L., Bhadra, N. Nerve conduction block utilising high-frequency alternating current. Med. Biol. Eng. Comput. 42, 394–406 (2004). https://doi.org/10.1007/BF02344716

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02344716

Keywords

Navigation