Skip to main content
Log in

Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts

  • Published:
Facies Aims and scope Submit manuscript

Summary

From shallow water caves of fringing reefs related to continental islands of the Lizard Island Section thrombolitic micritic microbialites were observed. The microbialites exhibit always a light decreasing facies succession. The succession starts with a coralgal community and ends with light independent microbial biofilms and benthos (coralline sponges). The sessile mineralized benthos community is constructed of crustose foraminifera, serpulids, thecidean brachiopods, bryozoans, and coralline sponges. The observed benthic community is very similar to those one observed in cryptic habitates of Aptian and Albian reefs of northern Spain.

For longtime studies of the microbialite formation and growth rates of coralline sponges the specimens were stained in vivo, within their natural habitat with histochemical fluorochromes and nonfluorescent agents. Main results are a very slow growth of the microbialite and associated sponges (50–100 μm/y). Only few calcifying microbes are participators during microbialite formation. Calcifying acidic organic macromolecules are mainly responsible for microbialite formation by cementing detritical material. Fe/Mn-bacterial biofilms are responsible for strong corrosion of the microbialite. Beside the corrosive activity of the Fe/Mn-bacterial biofilms boring sponges (Aka, Cliona) are the main destructors.

Geochemically the observed microbialites are composed of mainly high-Mg calcites and exhibit high positive δ13C (+3 to +4) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Addadi, L. &Weiner, S. (1985): Interactions between acidic proteins and Crystals: Stereochemical requirements in biomineralization.—Proc. Natl. Acad. Sci. USA,82, 4110–4114

    Google Scholar 

  • — (1989): Stereochemical and Structural Relations between Macromolecules and Crystals in Biomineralization.—In:Mann, S.;Webb, J. &Williams, R.J.P. (eds.): Biomineralization.— 133–156, Weinheim (VCH)

    Google Scholar 

  • — (1992): Kontroll- und Designprinzipien bei der Biomineralisation. —Angew. Chemie,104, 159–176, Weinheim

    Google Scholar 

  • Addadi, L.;Berman, A.;Moradian-Oldak, J. &Weiner, S. (1990): Tuning of Crystal Nucleation and Growth by Proteins: Molecular Interactions at Solid-Liquid Interfaces in Biomineralization. —Croatica Chem. Acta,63, 539–544, Zagreb

    Google Scholar 

  • Barnes, D.J. (1981): Improved measurement of coral calcification by sequential incubations with tritiated tetracycline and 45-calcium. —Proc. 4th internat. Coral Reef Symp., Manila,2, 249–255, Manila

    Google Scholar 

  • Basile, L.L., Cuffey, R.J. &Kosich, D.F. (1984): Sclerosponges, Pharetronids, and Sphinctozoans (relict cryptic hard-bodied porifera) in the modern reefs of Enewetak Atoll.—J. Paleont.,54, 636–650; Tulsa

    Google Scholar 

  • Berman, A.;Addadi, L. &Weiner, S. (1988): Interactions of seaurchin skeleton macromolecules with growing calcite crystals —a study of intracrystalline proteins.—Nature,331, 546–548, London

    Google Scholar 

  • Berner, R.A. (1968): Calcium carbonate concretions formed by the decomposition of organic matter.—Science,159, 195–197, Washington

    Google Scholar 

  • Borbas, J.E.;Wheeler, A.P. &Sikes, C.S. (1991): Molluscan Shell Matrix Phosphoproteins: Cirrelation of Degree of Phosphorylation to Shell Mineral Microstructure and to In Vitro Regulation of Mineralization.—J. Exp. Zool.258, 1–13

    Google Scholar 

  • Brachert, T. &Dullo, C. (1991): Laminar micritic crusts and associated foreslope processes, Red Sea.—J. Sed. Petrol.,61, 354–363, Tulsa

    Google Scholar 

  • Buczynski, C. &Chafetz, H.S. (1991): Habit of Bacterially induced Precipitates of Calcium Carbonate and the Influence of medium Viscosity on Minerology.—J. Sed. Petrol.,61, 226–233, Tulsa

    Google Scholar 

  • Burne, R.V. &Moore, L.S. (1987): Microbialites: Organosedimentary deposits of benthic microbial communities.— Palaios,2, 241–254, Tulsa

    Google Scholar 

  • Carroll, J.J., Greenfield, L.J. &Johnson, R.F. (1966): The Mechanism of Calcium and Magnesium Uptake from Sea Water by a Marine Bacterium.—J. Cell. and Cop. Physiol.,66, 109–118.

    Google Scholar 

  • Chafetz, H.S. (1986): Marine Peloids: A Product of Bacterillay induced Precipitation of Calcite.—J. Sed. Petrol.,56, 812–817, Tulsa

    Google Scholar 

  • Chafetz, H.S. &Buczynski, C. (1992): Bacterially induced Lithification of Microbial Mats.—Palaios,7, 277–293, Tulsa

    Google Scholar 

  • Crisp, D.J. &Ryland, J.S. (1960): Influence of filming and of surface texture on the settlement of marine organisms.— Nature,185, p. 119 London

    Google Scholar 

  • Cuif, J.-P., Gautret, P., Laghi, G.F., Mastandrea, A., Pradier, B. &Russo, F. (1990): Recherche sur la fluorescence UV du squelette aspiculaire chez les démonsponges calcitiques Triasiques.—Geobios,23, 21–31, Lyon

    Google Scholar 

  • Degens, E.T. (1976): Molecular mechanisms on carbonate, phosphate and silica deposition in the living cell.—Topics on curr. Chem.,64, 1–112

    Google Scholar 

  • — (1979): Why do organisms calcify?.—Chem. Geol.,25, 257–269, Amsterdam

    Google Scholar 

  • — (1989): Perspectives on Biogeochemistry.— 423 p., Berlin (Springer)

    Google Scholar 

  • Degens, E.T., Carey, F.G., Spencer, D.W. (1967): Amino-acids and amino-sugars in calcified tissues of portunid crabs.— Nature,216, 601–603, London

    Google Scholar 

  • Degens, E.T. &Ittekkot, V. (1986): Ca2+-Stress, biological response and particle aggregation in the aquatic habitat.— Netherlands. J. Sea Res.,20, 109–116.

    Google Scholar 

  • Dravis, J.J. &Yurewicz, D.A. (1985): Enhanced carbonate petrography using fluorescence microscopy.—J. Sed. Petrol.,55, 795–804, Tulsa

    Google Scholar 

  • Drew, G.H. (1911): The action of some denitrifying bacteria in tropical and temperature seas, and the bacterial precipitation of calcium carbonate.—J. Mar. Biol. Assoc. U.K.,9, 142–155

    Google Scholar 

  • Druffel, E.R.M. &Benavides, L.M. (1986): Input of excess CO2 to the surface ocean based on 13C/12C ratios in banded Jamaican sclerosponge.—Nature,321, 58–61, London

    Google Scholar 

  • Finerman, G.A.M. &Milch, R.A. (1963): In vitro Binding of Tetracyclines to Calcium.—Nature,196, 486–487, London

    Google Scholar 

  • Fricke, H. &Meischner, D. (1985): Depth limits of Bermudan scleractinian corals: a submersible survey.—Mar. Biol.,88, 175–187, Berlin

    Google Scholar 

  • Fricke, H. &Schumacher, H. (1983): The depth limits of Red Sea stony corals: an ecophysiological problem (a deep diving survey by submersible).—Pubbl. della Staz. Zool. de Napoli I Mar. Ecol.,4, 163–194, Naple

    Google Scholar 

  • Fritz, G. K. (1958): Schwammstotzen, Tuberoide und Schuttbreccien im Weißen Jura der Schwäbischen Alb.—Arb. Geol. Paläont. Inst. TH Stuttgart, N.F.,13, 118 p., Stuttgart

  • Gautret, P. (1989): Premières données sur les masses moléculaires des composés organiques associés aux squelettes aspiculaires de spongiaires calcifiés (Démosponges et Calcarea).—C.R. Acad. Sci. Paris,309 (ser. II) 1083–1088, Paris

    Google Scholar 

  • Gautret, P. &Marin, F. (1990): Composition en acides aminés des phases protéiques solubles et insolubles du squelette calcaire de trois Démosponges actuelles:Ceratoporella nicholsoni (Hickson),Astrosclera willeyana Lister etVaceletia crypta (Vacelet).—C. R. Acad. Sci. Paris,310 (ser. II), 1369–1374, Paris.

    Google Scholar 

  • Gawlitta, W., Stockem, W., Wehland, J. &Weber, K. (1980): Pinocytosis and Locomotion of Amoebae.—Cell and Tissue Res.,213, 9–20, Berlin

    Google Scholar 

  • Gerdes, G. & Krumbein, W. E. (1987): Biolaminated Deposits.— Lecture Notes in Earth Sciences,9, 283 p., Berlin

  • Grant, R.E. (1980): Brachiopods of Enewetak Atoll.—In:Devaney, D.M., Reese, E.S. Burch, B.L. & Helfrich, P. (eds.), The Natural History of Enewetak Atoll; Vol. II.—77–84, Honolulu

  • Greenfield, L.J. (1963): Metabolism and concentration of Calcium and Magnesium and precipitation of Calcium carbonate by a marine bacterium.—Ann. N.Y. Acad. Sci.,130, 23–45, New York

    Google Scholar 

  • Gunthorpe, M.E., Sikes, C.S. &Wheeler, A.P. (1990): Promotion and Inhibition of Calcium Carbonate Crystallization in Vitro by Matrix Protein from Blue Crab Exoskeleton.—Biol. Bull.,179, 191–200

    Google Scholar 

  • Hamilton, W.A. &Characklis, W.G. (1989): Relative Activites of Cells in suspension and in Biofilms.—In:Characklis, W.G. &Wilderer, P.A. (eds.): Structure and Function of Biofilms. —199–219, Dahlem Konferenzen (Wiley)

    Google Scholar 

  • Hausser, I. &Herth, W. (1983): The Ca2+-Chelating antibiotic, Chlorotetracyline (CTC), disturbs multipolar tip growth and primary wall formation inMicrasterias.—Protoplasma,117, 167–173, Berlin

    Google Scholar 

  • Henrich, R., Hartmann, M., Reitner, J., Schäfer, P., Steinmetz, S., Freiwald, A., Dietrich, P. &Thiede, J. (1992): Facies belts and Communities of the Arctic Vesterisbanken Seamount (Central Greenland Sea).—Facies,27, 71–104, Erlangen

    Google Scholar 

  • Hicks, J.D. &Matthael, E. (1958): A selective fluorescence stain for mucin.—J. Pathol. Bacteriol.,75, 473–476

    Google Scholar 

  • Jackson, J. B. C., Goreau, T. F. &Hartman, W. D. (1971): Recent Brachipod-Coralline Sponge Communities and their palaeo-ecological significance.—Science173, 623–625, Washington

    Google Scholar 

  • Jones, B. &Hunter, I. G. (1991): Corals to Rhodolites to Microbialites-A Community Replacement Sequence Indicative of Regressive Conditions.—Palaios,6, 54–66, Tulsa

    Google Scholar 

  • Kellerman, K. F. (1915): Relation of bacteria to deposition of calcium carbonate.—Geol. Soc. Am., Bull.,26, p. 58.

    Google Scholar 

  • Kellerman, K. F. &Smith, N. R. (1914) Bacterial precipitation of calcium carbonate.—J. Wash. Acad. Sci.,4, 400–402, Washington

    Google Scholar 

  • Kempe, S. et. al. (1993): this volume

  • Kempe, S. &Degens, E. T. (1985): An Early Soda Ocean?.— Chemical Geology,53, 95–108, Amsterdam

    Google Scholar 

  • Kempe, S., Kazmierczak, J. &Degens, E. T. (1989): The Soda Ocean Concept and its Bearing on Biotoc Evolution.—In:Crick, R. E. (ed.): Origin, Evolution, and Modern Aspects of Biomineralisation in Plants and Animals.— 229–43, New York (Plenum Press)

    Google Scholar 

  • Keupp, H., Jenisch, A., Herrmann, R., Neuweiler & Reitner, J. (1993): Modern cryptic microbial carbonate crusts—a key to the environmental analysis of fossil spongiolites?.—Facies,29, this volume

  • Kobayashi, S. &Taki, J. (1969): Calcification in Sea Urchins I. a Tetracycline Investigation of Growth of the Mature Test inStrongylocentrotus intermedius.—Calc. Tissue Res.,4, 211–223.

    Google Scholar 

  • Krumbein, W. E. (1974): On the precipitation of aragonite on the surface of marine bacteria.—Naturwissenschaften,61, p. 167.

    Google Scholar 

  • Krumbein, W. E. (1976): Biotransfer of minerals by microbes and microbial mats.—In:Leadbeater, B. S. C. & Riding, R. (eds.): Biomineralisation in Lower Plants and Animals.—The Syst. Assoc. Spec., Vol.30, 55–72 Oxford

  • — (1979): Photolithotrophic and Chemoorganotrophic Activity of Bacteria and Algae as Related to Beachrock Formation and Degradation.—Geomicrobiol. J.,1, 139–203 New York

    Google Scholar 

  • Kühlmann, D. H. H. (1983): Composition and ecology of deep-water coral associations.—Helgoländer Meeresuntersuchungen,36, 183–204, Hamburg

    Google Scholar 

  • Land, L. S. (1971): Submarine lithification of Jamaican reefs.—In: Bricker, O. F. (ed.), Carbonate Cements, 59–62; Baltimor (John Hopkins)

    Google Scholar 

  • Land, L. S. &Goreau, T. F. (1970): Submarine lithification of Jamaican reefs.— J. Sed. Petrol.,40, 457–462, Tulsa

    Google Scholar 

  • Leadbeater, B. S. C. &Riding, R. (eds.) (1986): Biomineralization in Lower Plants and animals. Oxford (Clarendon Press)

    Google Scholar 

  • Lowenstam, H. A. (1981): Minerals formed by organisms.— Science,211, 1126–1131, Washington

    Google Scholar 

  • Lowenstam, H. A. &Weiner, S. (1989): On Biomineralization.— 324 p., Oxford (Oxford Univ. Press).

    Google Scholar 

  • Macintyre, I. G. (1977): Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama.— J. Sed. Petrol.,47, 503–516; Tulsa

    Google Scholar 

  • — (1978): Reply: Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama.—J. Sed. Petrol.,48, 669–670, Tulsa

    Google Scholar 

  • — (1984): Extensive submarine lithification in a cave in the Belize Barrier Reef Platform.—J. Sed. Petrol,54, 11–25, Tulsa

    Google Scholar 

  • Macintyre, I. G. (1985): Submarine Cements—The Peloidal Question.—In:Schneidermann, N. & Harris, P.M., Carbonate Cements.— Soc. Econ. Paleont. Miner., Spec. Publ.36, 109–115, Tulsa

  • Macintyre, I. G. &Marshall, J. F. (1988): Submarine Lithification in Coral Reefs: some Facts and Misconceptions.—Proc. 6th Internat. Coral Reef Symp., Australia, 1988, Vol.1, 263–272.

    Google Scholar 

  • Mann, S. (1989): Crystallochemical Strategies in Biomineralisation. In:Mann, S., Webb, J. &Williams, R. J. P. (eds.): Biomineralization. —35–60, Weinheim (VCH).

    Google Scholar 

  • Mann, S., Webb, J. &Williams, R. J. P. (1989): Biomineralization. —541 S, Weinheim (VCH).

    Google Scholar 

  • Marshall, J. F. (1983): Submarine cementation in a high-energy platform reef: One Tree Reef, southern Great Barrier Reef.—J. Sed. Petrol.,53, 1133–1149, Tulsa

    Google Scholar 

  • — (1986): Regional distribution of submarine cements within a epicontinental reef system: central Great Barrier Reef, Australia.— In:Schroeder, J. H. &Purser, B. H. (eds.): Reef Diagenesis, 8–26, Berlin (Springer)

    Google Scholar 

  • McConnaughey, T. (1989): 13C and 18O isotopic disequilibrium in biological carbonates: II. In vitro simulation of kinetic isotope effects.—Geochimica Cosmochimica Acta,53, 163–171, Oxford.

    Google Scholar 

  • Milch, R. A., Rall, D. P. &Tobie, J. E. (1958): Fluorescence of tetracycline antibiotics in bone.—J. Bone Jt. Surg.,40A, 897–910.

    Google Scholar 

  • Morita, R. Y. (1980): Calcite Precipitation by Marine Bacteria.— Geomicrobiology J.,2, 63–82

    Google Scholar 

  • Neuweiler, F. (1993): Development of Albian microbialites and microbialite reefs at marginal platfom areas of the Vasco-Cantabrian Basin (Soba reef area, Cantabria, N.Spain).— Facies29, this volume.

  • Novitsky, J. A. (1981): Calcium Carbonate Precipitation by Marine Bacteria.—Geomicrobiology J.2, 375–388.

    Google Scholar 

  • Rahn, B. A. (1977). Polychrome fluorescence labelling of bone formation. Instrumental aspects and experimental use.—Zeiss Infomationen,22, 36–42.

    Google Scholar 

  • Reiswig, H. M. (1981): Partical carbon and energy budgets of the bacteriospongeVerongia fistularis (Porifera: Demospongiae) in Barbados.—Pubbl. Staz. Zool. Napoli I Mar. Ecol.,2, 273–293, Napoli

    Google Scholar 

  • Reiswig, H. M. (1990): In situ Feeding in two Shallow-Water Hexactinellid Sponges.—In:Rützler, K. (ed.): New Perspectives in sponge Biology.—504–510; Washington, D.C. (Smithsonian Inst. Press)

    Google Scholar 

  • Reitner, J. (1982): Die Entiwicklung von Inselplattformen und Diapir-Atollen im Alb des Basko-Kantabrikums.—N. Jb. Geol. Paläont. Abh.,165, 87–101, Stuttgart

    Google Scholar 

  • — (1986): A comparative study of diagenesis in diapir-influenced reef atolls and a fault block reef platform in the late Albian of the Vasco-Cantabrian Basis (Northern Spain).—In:Schroeder, J. H. &Purser, B. H. (eds.): Reef Diagenesis.— 186–209, Berlin (Springer)

    Google Scholar 

  • — (1987): Mikrofazielle, palökologische und paläogeographische Analyse ausgewählter Vorkommen flachmariner Karbonate im Basko-Kantabrischen Strike Slip Fault-Becken-System (Nordspanien) an der Wende von der Unterkreide zur Oberkreide. —Documenta naturae,40, 1–248, München

    Google Scholar 

  • — (1989): Lower and Mid-Cretaceous Coralline sponge Communities of the Boreal and Tethyan Realms in Comparison with the Moderm Ones.—In:Wiedmann, J. (ed.): Cretaceous of the Western Tethys.—Proc. 3rd Internat. Cretaceous Symp., 851–878, Tübingen 1987; Stuttgart (Schweizerbart)

    Google Scholar 

  • Reitner, J. (1992): “Coralline Spongien” Der Versuch einer phylogenetisch-taxonomischen Analyse.—Berliner Geowiss. Abh. (E),1, 352 pp., Berlin

  • Reitner, J. (in press): Are Sponges sophisticated evolved Microbial Biofilms?—Berliner Geowiss. Abh. (E).

  • Reitner, J., Gautret, P. & Müller-Wille, S. (in press): Biomineralization inSpirastrella (Acanthochaetetes) wellsi (Demospongia, Hadromerida).—Coral Reefs

  • Reitner, J. &Engeser, T. (1987): Skeletal structures and habitates of Recent and fossilAcanthochaetetes (subclass Tetractinomorpha, Demospongiae, Porifera).—Coral Reefs6, 151–157, Berlin

    Google Scholar 

  • Romeis, B. (1989): Mikroskopische Technik Neubearb. und hrsg. vonP. Böck.—697 p; 17. ed., München (Urban & Schwarzenberg).

    Google Scholar 

  • Rosenberg, E. (1989): Biofilms on Water-insoluble Substrates.— In:Characklis, W. G. &Wilderer, P. A. (eds.): Structure and Function of Biofilms.—59–71; Dahlem Konferenzen (Wiley)

    Google Scholar 

  • Rützler, K. (ed.), New Perspectives in Sponge Biology.—504–510, Washington, D. C. (Smithsonian Inst. Press).

  • Ryland, J.S. (1959): Experiments on the selection of algal substrates by polyzoan larvae.—J. exp. Biol.,36, 613–631

    Google Scholar 

  • Santavy, D., Willenz, Ph. &Colwell, R. R. (1990): Phenotypic Study of Bacteria Associated with the Caribbean Sclerosponge,Ceratoporella nicholsoni.—Appl. Environment. Microbiology,56, 1750–1762

    Google Scholar 

  • Sarà, M. (1971): Ultrastructural aspects of the symbiosis between two species of the genusAphanocapsa (Cyanophyceae) andIcrinia variabilis (Demospongiae).—Mar. Biol.,11, 214–221, Berlin

    Google Scholar 

  • Schmal, G. (1985): Bacterially induced stolon settlement in the scyphopolyp ofAurelia aurita (Cnidaria, Scyphozoa).— Helgoländer Meeresuntersuchungen,39, 33–42, Hamburg

    Google Scholar 

  • Scholz, J. (1993): Self-organization in Reefs: Observations on Bryozoans and Microbial Mats.—Facies,29, this volume

  • Sigg, L. &Stumm, W. (1989): Aquatische Chemie.—388 pp., Zürich (VDF).

    Google Scholar 

  • Simkiss, K. (1977): Biomineralisation and Detoxification.—Calif. Tiss. Res.,24, 199–200; Berlin (Springer)

    Google Scholar 

  • Simkiss, K. (1986): The processes of biomineralization in lower plants and animals-an overview.—In:Leadbeater, B. S. C. & Riding, R. (eds.): Biomineralisation in Lower Plants and Animals.—The Syst. Assoc. Spec. Vol.30, 19–38, Oxford

  • Simkiss, K. &Wilbur, K. M. (1989): Biomineralization. Cell Biology and Mineral Deposition.—337 pp., San Diego (Academic Press)

    Google Scholar 

  • Soule, J. H. (1973): Histological and Histochemical Studies on the Bryozoan-substrate Interface.—In:Larwood, G. P. (ed.): Living and fossil Bryozoa.—343–347, London (Academic Press)

    Google Scholar 

  • Stebbing, A. R. D. (1972): Preferential stellement of a bryozoan and serpulid larvae on the younger parts ofLaminaria fronds.—J. mar. biol. Ass. U.K.,52, 765–772

    Google Scholar 

  • Stoffers, P. &Botz, R. (1990): Carbonate crusts in the Red Sea: their composition and isotope geochemistry.—Ittekot, V., Kempe, S., Michaelis, W. &Spitzy, A. (eds.): Facets of modern biogeochemistry.—242–252, Berlin (Springer)

    Google Scholar 

  • Strugger, S. (1940): Fluoreszenzmikroskopische Untersuchungen über die Aufnahme und Speicherung des Acridinorange durch lebende und tote Pflanzenzellen.—Jena. Z. Naturwiss.,73, 97ff., Jena

  • Tarutani, T., Clayton, R. N. &Mayeda, T. K. (1969): The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water.—Geochim. Cosmochim. Acta,33, 987–996, Oxford

    Google Scholar 

  • Vacelet, J. (1970): Description de cellules á bactéries intranucléaires chez des épongesVerongia.—J. Microscopie,9, 333–346

    Google Scholar 

  • — (1971): L’ultrastructure de la cuticule d’éponge cornées du genreVerongia.—J. Microsopie,10, 113–116

    Google Scholar 

  • — (1975): Etude en microscopie électronique de l’association entre bactéries et spongiaires du genreVerongia (Dictyoceratide). —J. Microscopie Biol. cell.,23, 271–288.

    Google Scholar 

  • Vacelet, J. &Vasseur, P. (1965): Spongiaires des grottes et surplombs des récifs de Tuléar (Madagascar).—Rec. Trav. Stat. mar. Endoume, Suppl.4, 71–123, Marseille

    Google Scholar 

  • —— (1971): Eponge des récifs coralliens de Tuléar (Madagascar). —Téthys, Suppl.1, 51–126

    Google Scholar 

  • Videla, H. A. (1989): Metal Dissolution/Redox in Biofilms.—In:Characklis, W. G. & Wilderer, P. A. (eds.): Structure and Function of Biofilms.—301–320; Dahlem Konferenzen (Wiley)

  • Weber, J. N. &Woodhead, M. J. (1970): Carbon and Oxygen Isotope Fractionation in the Skeletal Carbonate of Reef-Building Corals.—Chem. Geol.,6, 93–117, Amsterdam

    Google Scholar 

  • Weiner, S., Traub, W. &Lowenstam, H. A. (1983): Organic matrix in calcified exoskeletons.—In:Westbroek, P. &de Jong, E. W. (eds.): Biomineralization and Biological Metal Accumulation.— 205–224, Amsterdam (Reide)

    Google Scholar 

  • Westbroek, P. &de Jong, E. W. (eds.) (1983): Biomineralization and Biological Metal Accumulation.—Amsterdam (Reidel)

    Google Scholar 

  • Wheeler, A. P. &Sikes, C. S. (1989): Matrix-Crystal interactions in CaCO3 Biomineralization.—In:Mann, S., Webb, J. &Williams, R. J. P. (eds.): Biomineralization.—95–131, Weinheim (VCH).

    Google Scholar 

  • Wilderer, P. A. & Characklis, W. G. (1989): Structure and Function of Biofilms.—In:Characklis, W. G. & Wilderer, P. A. (eds.).—Structure and Function of Biofilms.—5–17; Dahlem Konferenzen (Wiley)

  • Wilkinson, C. (1978a): Microbial associations in sponges. II. Numerical Analysis of Sponge and Water Bacterial Populations. —Mar. Biol.,49, 169–176; Berlin

    Google Scholar 

  • — (1978b): Microbial associations in sponges. III. Ultrastructure of the in situ Associations in Coral Reef Sponges.—Mar. Biol.,49, 177–185; Berlin

    Google Scholar 

  • — (1979): Nutrient translocation from symbiontic cyanobacteria to coral reef sponges.—Coll. Internat. CNRS, Biologie de spongiaires, 291:373–380, Paris

    Google Scholar 

  • — (1983): Net Primary Productivity in Coral Reef Sponges.— Science,219, 410–411, Washington

    Google Scholar 

  • Wilkinson, C. & Fay, P. (1979): Nitrogen fixation in coral reef sponges with symbiontic cyanobacteria.—nature,279, 527–529, London

    Google Scholar 

  • Wilkinson, C. &Garrone, R. (1980): Nutrition of marine sponges. Involvement of symbiontic bacteria in the uptake of dissolved carbon.—In:Smith, D. C. &Tiffon, Y. (eds.): Nutrition in the lower metazoa.—157–161, Oxford (Pergamon)

    Google Scholar 

  • Wilkinson, C., Garrone, R. &Herbage, D. (1979): Sponge collagen degradation in vitro by sponge-specific bacteria.—Coll. Internat. CNRS, Biologie de spongiaires,291, 361–364, Paris

    Google Scholar 

  • Willenz, Ph. &Hartman, W. D. (1985): Calcification rate ofCeratoporella nicholsoni (Porifera: Sclerospongiae): Anin situ study with calcein.—Proc. 5th Internat. Coral Reef Congr., Tahiti 1985,5, 113–118.

    Google Scholar 

  • Williams, R. J. P. (1989): The Functional Form of Biominerals.— In:Mann, S., Webb, J. &Williams, R. J. P. (eds.): Biomineralization. —1–34, Weinheim (VCH).

    Google Scholar 

  • Rorms, D. &Weiner, S. (1986): Mollusk shell organic matrix: Fourier transform infared of the acidic macromolecules.—J. Exp. Zool.,237, 11–20

    Google Scholar 

  • Zankl, H. (1993):—Facies29, this volume

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reitner, J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts. Facies 29, 3–39 (1993). https://doi.org/10.1007/BF02536915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536915

Keywords

Navigation