Skip to main content
Log in

Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In this study, we analyzed blood flow through a model stenosis with Reynolds numbers ranging from 300 to 3,600 using both experimental and numerical methods. The jet produced at the throat was turbulent, leading to an axisymmetric region of slowly recirculating flow. For higher Reynolds numbers, this region became more disturbed and its length was reduced. The numerical predictions were confirmed by digital particle image velocimetry and used to describe the fluid dynamics mechanisms relevant to prior measurements of platelet deposition in canine blood flow (R.T. Schoephoersteret al., Atherosclerosis and Thrombosis 12:1806–1813, 1993). Actual deposition onto the wall was dependent on the wall shear stress distribution along the stenosis, increasing in areas of flow recirculation and reattachment. Platelet activation potential was analyzed under laminar and turbulent flow conditions in terms of the cumulative effect of the varying shear and elongational stresses, and the duration platelets are exposed to them along individual platelet paths. The cumulative product of shear rate and exposure time along a platelet path reached a value of 500, half the value needed for platelet activation under constant shear (J. M. Ramstacket al., Journal of Biomechanics 12: 113–125, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts, P. A., M. M. van Den, S. A. T. Broek, G. W. Prins, D. C. Kuiken, J. J. Sixma, and R. M. Heethaar. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood.Arteriosclerosis 8:819–824, 1988.

    PubMed  CAS  Google Scholar 

  2. Badimon, L., and J. J. Badimon. Mechanisms of arterial thrombosis in nonparallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall.J. Clin. Invest. 84:1134–1144, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Basmadjian, D. The effect of flow and mass transport in thrombogenesis.Ann. Biomed. Eng. 18:685–709, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Christenson, J. T., J. Mergerman, K. C. Hanel, G. J. L'Italien, H. W. Strauss, and W. M. Abbott. The effect of blood flow rates on platelet deposition in PTFE arterial bypass grafts.Trans. ASAIO J. 27:188–191, 1981.

    CAS  Google Scholar 

  5. Colantuoni, G., J. D. Hellums, J. L. Moake, and C. P. Alfrey, Jr. Response of human platelets to shear stress at short exposure times.Trans. Am. Soc. Artif. Organs 23:626–630, 1977.

    CAS  Google Scholar 

  6. Deshpande, M. D., and D. P. Giddens. Computation of turbulent flow through constrictions.Eng. Mech. 109: 466–471, 1983.

    Article  Google Scholar 

  7. Dewanjee, M. K., M. Kapadvanjwala, W.-W. Mao, W. Jy, Y. Ahn, K. Ruzius, A. K. Ghafouripour, A. N. Serafini, and G. N. Sfakianakis. A higher blood flow window of reduced thrombogenicity and acceptable fragmentation in a hollow fiber hemodialyzer.ASAIO J. 39: M363-M367, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Eckstein, E. C., and F. Belgacem. Model of platelet transport in flowing blood with drift and diffusion terms.Biophys. J. 60:53–69, 1991.

    PubMed  CAS  Google Scholar 

  9. Eldrup-Jorgensen, J., W. C. Mckey, and R. J. Connoly. Evaluation of arterial prosthesis in a baboon ex vivo shunt: the effect of graft material and flow on platelet deposition.Am. J. Surg. 150:185–190, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Folie, B. J., and L. V. McIntire. Mathematical analysis of mural thrombogenesis: concentration profiles of platelet-activating agents and effects of viscous shear flow.Biophys. J. 56:1121–1141, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Hellums, J. D. Biorheology in thrombosis research.Ann. Biomed. Eng. 22:445–455, 1994.

    Article  PubMed  CAS  Google Scholar 

  12. Hellums, J. D., D. M. Peterson, N. A. Stathopoulos, J. L. Moake, and T. D. Giorgio. Studies on the mechanisms of shear-induced platelet activation. In: Cerebral ischemia and hemorheology, edited by A. Hartman and W. Kuschinsky, New York: Springer-Verlag, 1987, pp. 80–89.

    Google Scholar 

  13. Karino, T., and H. L. Goldsmith. Aggregation of human platelets in an annular vortex distal to a tubular expansion.Microvasc. Res. 17:217–237, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. Karino, T., and H. L. Goldsmith. Adhesion of human platelets to collagen on the walls distal to a tubular expansion.Microvasc. Res. 17:238–262, 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Karino, T., H. L. Goldsmith, M. Motomiya, S. Mabuchi, and Y. Sohara. Flow patterns in vessels of simple and complex geometries. In: Blood in contact with natural and artificial surfaces, edited by E. F. Leonard, V. T. Turitto, and L. Vroman. New York: New York Academy of Sciences, 1987, pp. 422–441.

    Google Scholar 

  16. Lassila R., J. J. Badimon, S. Vallabhajosula, and L. Badimon. Dynamic monitoring of platelet deposition on severely damaged vessel wall in flowing blood.Arteriosclerosis 10:306–315, 1990.

    PubMed  CAS  Google Scholar 

  17. Lelah, M. D., L. K. Lamprecht, and S. L. Cooper. A canine ex vivo series shunt for evaluating thrombus deposition on polymer surfaces.J. Biomed. Mater. Res. 18:475–496, 1984.

    Article  PubMed  CAS  Google Scholar 

  18. Purvis, N. B., and T. D. Giorgio. The effects of elongational stress exposure on the activation and aggregation of blood platelets.Biorheology 28:355–367, 1991.

    PubMed  Google Scholar 

  19. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear induced activation of platelets.J. Biomech. 12: 113–125, 1979.

    Article  PubMed  CAS  Google Scholar 

  20. Schoephoerster, R. T., F. Oynes, H. Nunez, M. Kapadvanjwala, and M. K. Dewanjee. Effects of local geometry and fluid dynamics on regional platelet deposition on artificial surfaces.Atheroscler. Thromb. 12:1806–1813, 1993.

    Google Scholar 

  21. Stein, P. D., and H. N. Sabbah. Measured turbulence and its effect on thrombus formation.Circ. Res. 35:608–614, 1974.

    PubMed  CAS  Google Scholar 

  22. Sutera, S. P., M. D. Nowak, J. H. Joist, D. J. Zeffren, and J. E. Bauman. A programmable, computer-controlled, cone-plate viscometer for the application of pulsatile shear stress to platelet suspensions.Biorheology 25:449–459, 1988.

    PubMed  CAS  Google Scholar 

  23. Tangelder, G. J., D. W. Slaaf, H. C. Teirlink, R. Alewijnse, and R. S. Reneman. Localization within a thin optical section of fluorescent blood platelets flowing in a microvessel.Microvasc. Res. 23:214–230, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Wurzinger, L. J., P. Blasberg, and H. Schmid-Schönbein. Towards a concept of thrombosis in accelerated flow: rheology, fluid dynamics, and biochemistry.Biorheology 22:437–449, 1985.

    PubMed  CAS  Google Scholar 

  25. Young, D. F. Fluid mechanics of arterial stenosis.J. Biomech. Eng. 101:157–175, 1979.

    Google Scholar 

  26. Young, D. F., and F. Y. Tsai. Flow characteristics in models of arterial stenosis. I. Steady flow.J. Biomech. 76:395–410, 1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bluestein, D., Niu, L., Schoephoerster, R.T. et al. Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus. Ann Biomed Eng 25, 344–356 (1997). https://doi.org/10.1007/BF02648048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648048

Keywords

Navigation