Skip to main content
Log in

Isolation and characterization of high endothelial cell lines derived from mouse lymph nodes

  • Immunology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Two long-term cultured cell lines were established from BALB/c mouse axillary and cervical lymph nodes that exhibited a combination of functional, morphological, and phenotypic characteristics consistent only with high endothelial venule cells. Spleen lymphocytes selectively bound and migrated across the cell lines. On Matrigel, these cell lines formed tubules with lumens, a characteristic unique to endothelial cells. Morphologically the cells were 20–30 μm in diameter and exhibited contact inhibition. The cells were not myeloid in origin because they lacked sodium fluoride-inhibitable nonspecific esterase activity, myeloperoxidase activity, and F4/80 antigen. The cell line phenotypes were compared to high endothelial venule (HEV) cells in tissue sections. HEV cells in lymph node tissue sections expressed endoglin, PECAM-1, ICAM-1, VCAM-1, laminin, fibronectin, collagen IV, H2Kd, MECA 79, MECA 325, and vWF. The cell lines expressed endoglin, VCAM-1, fibronectin, and H2Kd. The cell line derived from cervical lymph nodes also expressed laminin and H2Dd. Neither cell line expressed collagen IV, IAd, ICAM-1, ICAM-2, dendritic cell antigen, or PECAM-1. They also did not express MECA antigens or intracellular vWF, consistent with reports of many cultured endothelial cells. To further substantiate cell line identification, antiserum generated against the cell lines bound specifically to HEV cells in frozen lymph node tissue sections and to both of the lymph node-derived cell lines but not control cell lines. Thus, the lymph node derived-cell lines expressed molecules found on HEV cellsin vivo and most importantly retained the functions of tubule formation, lymphocyte adhesion, and promotion of lymphocyte migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ager, A. Isolation and culture of high endothelial cells from rat lymph nodes. J. Cell Sci. 87:133–144; 1987.

    PubMed  Google Scholar 

  2. Anderson, N. D.; Anderson, A. O.; Wyllie, R. G. Specialized structure and metabolic activities of high endothelial venules in rat lymphatic tissues. Immunology 31:455–473; 1976.

    PubMed  CAS  Google Scholar 

  3. Bjerknes, M.; Cheng, H.; Ottaway, C. A. Dynamics of lymphocyte-endothelial interactionsin vivo. Science 231:402–405; 1986.

    Article  PubMed  CAS  Google Scholar 

  4. Buhring, Hans-J.; Muller, C. A.; Letarte, M., et al. Endoglin is expressed on a subpopulation of immature erythroid cells of normal human bone marrow. Leukemia 5:841–847; 1991.

    PubMed  CAS  Google Scholar 

  5. Cavender, D. E. Lymphocyte adhesion to endothelial cells in vitro: models for the study of normal lymphocyte recirculation and lymphocyte emigration into chronic inflammatory lesions. J. Invest. Dermatol. 93:88s-95s; 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Cavender, D. E. Organ-specific and non-organ-specific lymphocyte receptors for vascular endothelium. J. Invest. Dermatol. 94:41s-48s; 1990.

    Article  PubMed  CAS  Google Scholar 

  7. Cavender, D. E.; Haskard, D. O.; Joseph, B., et al. Interleukin 1 increases the binding of human B and T lymphocytes to endothelial cell monolayers. J. Immunol. 136:203–207; 1986.

    PubMed  CAS  Google Scholar 

  8. Cheifetz, S.; Bellon, T.; Cales, C., et al. Endoglin is a component of the transforming growth factor-beta receptor system in human endothelial cells. J. Biol. Chem. 267:19027–19030; 1992.

    PubMed  CAS  Google Scholar 

  9. Cole, A. A.; Wezeman, F. H. Cytochemical localization of tartrate-resistant acid phosphatase, alkaline phosphatase, and nonspecific esterase in perivascular cells of cartilage canals in the developing mouse epiphysis. Am. J. Anat. 180:237–242; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Crocker, P. R.; Gordon, S. Isolation and characterization of resident stromal macrophages and hematopoietic cell clusters from mouse bone marrow. J. Exp. Med. 162:993–1014; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Doron, D. A.; Jacobowitz, D. M.; Heldman, E., et al. Extracellular matrix permits the expression of von Willebrand’s factor, uptake of di-I-acetylated low density lipoprotein and secretion of prostacyclin in cultures of endothelial cells from rat brain microvessels. In Vitro Cell. Dev. Biol. 27A:689–697; 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Dorovini-Zis, K.; Huynh, H. K. Ultrastructural localization of factor VIII-related antigen in cultured human brain microvessel endothelial cells. J. Histochem. Cytochem. 40:689–696; 1992.

    PubMed  CAS  Google Scholar 

  13. Duijvestijn, A.; Hamann, A. Mechanisms of regulation of lymphocyte migration. Immunol. Today 10:23–28; 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Dustin, M. L.; Springer, T. A. Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell Biol. 107:321–331; 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Firrell, J. C.; Liposky, H. H. Leukocyte margination and deformation in mesenteric venules of rat. Am. J. Physiol. 256:H1667-H1674; 1989.

    PubMed  CAS  Google Scholar 

  16. Form, D. M.; Pratt, B. M.; Madri, J. A. Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55:521–530; 1986.

    PubMed  CAS  Google Scholar 

  17. Freemont, A. J.; Jones, C. J. P. Light microscopic, histochemical and ultrastructural studies of human lymph node paracortical venules. J. Anat. 136:349–362; 1983.

    PubMed  CAS  Google Scholar 

  18. Gaffney, E. V.; Tsai, Shiow-C.; Lingenfelter, S. E., et al. Biological response modifiers released by a mezerein-treated human monocyte leukemia cell line, THP-1. J. Biol. Response Modif. 4:396–407; 1985.

    CAS  Google Scholar 

  19. Ge, A. Z.; Butcher, E. C. Cloning and expression of a cDNA encoding mouse endoglin, an endothelial cell TGF-beta ligand. Gene 138:201–206; 1994.

    Article  PubMed  CAS  Google Scholar 

  20. Hamann, A.; Andrew, D. P.; Jablonski-Westrich, D., et al. Role of alpha4-integrins in lymphocyte homing to mucosal tissuesin vivo. J. Immunol. 152:3282–3293; 1994.

    PubMed  CAS  Google Scholar 

  21. Hamann, A.; Jablonski-Westrich, D.; Duijvestijn, A., et al. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J. Immunol. 140:693–699; 1988.

    PubMed  CAS  Google Scholar 

  22. Hamann, A.; Jablonski-Westrich, D.; Scholz, Karl-U., et al. Regulation of lymphocyte homing. I. Alterations in homing receptor expression and organ-specific high endothelial venule binding of lymphocytes upon activation. J. Immunol. 140:737–743; 1988.

    PubMed  CAS  Google Scholar 

  23. Harder, R.; Uhlig, H.; Kashan, A., et al. Dissection of murine lymphocyte-endothelial cell interaction mechanisms by SV-40-transformed mouse endothelial cell lines: novel mechanisms mediating basal binding, and alpha 4-integrin-dependent cytokine-induced adhesion. Exp. Cell Res. 197:259–267; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Harlow, E.; Lane, D., eds. Antibodies: a laboratory manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory; 1988:418–419.

    Google Scholar 

  25. Ingber, D. E.; Prusty, D.; Frangioni, J. V., et al. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110:1803–1811; 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Ise, Y.; Yamaguchi, K.; Sato, K., et al. Molecular mechanisms underlying lymphocyte recirculation. I. Functional, phenotypical and morphological characterization of high endothelial cells culturedin vitro. Eur. J. Immunol. 18:1235–1244; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Johnson, T. E.; Umbenhauer, D. R.; Hill, R., et al. Karyotypic and phenotypic changes during in vitro aging of human endothelial cells. J. Cell. Physiol. 150:17–27; 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Jones, K. H.; St. Pierre, R. L. Analysis of cellular heterogeneity in mouse thymus cultures. In Vitro 17:431–440; 1981.

    Article  PubMed  CAS  Google Scholar 

  29. Krawisz, B. R.; Florine, D. L.; Scott, R. E. Differentiation of fibroblast-like cells into macrophages. Cancer Res. 41:2891–2899; 1981.

    PubMed  CAS  Google Scholar 

  30. Lastres, P.; Bellon, T.; Cabanas, C., et al. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur. J. Immunol. 22:393–397; 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Leak, L. V.; Jones, M. Lymphatic endothelium isolation, characterization and long-term culture. Anat. Rec. 236:641–652; 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Li, E. Y.; Lam, K. W.; Lam, L. T. Esterases in human leukocytes. J. Histochem. Cytochem. 21:1; 1973.

    PubMed  CAS  Google Scholar 

  33. Liaw, L.; Schwartz, S. M. Comparison of gene expression in bovine aortic endothelium in vivo versus in vitro: differences in growth regulatory molecules. Arterioscler. Thromb. 13:985–993; 1993.

    PubMed  CAS  Google Scholar 

  34. Mackay, C. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5:423–427; 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Mackay, C. R.; Imhof, B. A. Cell adhesion in the immune system. Immunol. Today 14:99–102; 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Mackay, C. R.; Marston, W. L.; Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171:801–817; 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Madri, J. A.; Basson, M. D. Extracellular matrix-cell interactions: dynamic modulators of cell, tissue and organism structure and function. Lab. Invest. 66:519–521; 1992.

    PubMed  CAS  Google Scholar 

  38. Mattila, P.; Hayry, P.; Rendonen, R. Protein kinase C is crucial in signal transduction during IFN-τ induction in endothelial cells. FEBS Lett. 250:362–366; 1989.

    Article  PubMed  CAS  Google Scholar 

  39. May, M. J.; Ager, A. ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon gamma, tumor necrosis factor-alpha and interleukin 1 beta. Eur. J. Immunol. 22:219–226; 1992.

    Article  PubMed  CAS  Google Scholar 

  40. May, M. J.; Entwistle, G.; Humphries, M. J., et al. VCAM-1 is a CS1 peptide-inhibitable adhesion molecule expressed by lymph node high endothelium. J. Cell Sci. 106:109–119; 1993.

    PubMed  CAS  Google Scholar 

  41. Montesano, R.; Pepper, M. S.; Mohle-Steinlein, U., et al. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell 62:435; 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Nitta, K.; Uchida, K.; Yumura, W., et al. Characterization of the glomerular endothelial cell in culture. Nippon Jinzo Gakkai Shi. 35:887–891; 1993.

    PubMed  CAS  Google Scholar 

  43. Oppenheimer-Marks, N.; Davis, L. S.; Lipsky, P. E. Human T lymphocyte adhesion to endothelial cells and transendothelial migration; alteration of receptor use relates to the activation status of both the T cell and the endothelial cell. J. Immunol. 145:140–148; 1990.

    PubMed  CAS  Google Scholar 

  44. Pardi, R.; Inverardi, L.; Rugarli, C., et al. Antigen-receptor complex stimulation triggers protein kinase C-dependent CDlla/CD18-cytoskeleton association in T lymphocytes. J. Cell Biol. 116:1211–1220; 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Pober, J. S.; Gimbrone, M. A., Jr.; Lapeirre, L. A., et al. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J. Immunol. 137:1893–1896; 1986.

    PubMed  CAS  Google Scholar 

  46. Prieto, J.; Takei, F.; Gendelman, R., et al. MALA-2, mouse homologue of human adhesion molecule ICAM-1 (CD54). Eur. J. Immunol. 19:1551–1557; 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Quackenbush, E. J.; Letarte, M. Identification of several cell surface proteins of non-T, non-B acute lymphoblastic leukemia by using monoclonal antibodies. J. Immunol. 134:1276–1285; 1985.

    PubMed  CAS  Google Scholar 

  48. Romani, N.; Stingl, G.; Tschachler, E., et al. The Thy-1-bearing cell of murine epidermis. J. Exp. Med. 161:1368–1383; 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Schmid-Schoenbein, G. W.; Fung, Yuan-C.; Zweifach, B. W. Vascular endothelium-leukocyte interaction: sticking shear force in venules. Circ. Res. 36:173–184; 1975.

    PubMed  CAS  Google Scholar 

  50. Shimizu, Y.; Newman, W.; Tanaka, Y., et al. Lymphocyte interactions with endothelial cells. Immunol. Today 13:106–112; 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Sigma Chemical Co. Leukocyte peroxidase. Technical Bulletin #390, St. Louis, MO.; 1980.

  52. Sigma Chemical Co. Acid phosphatase in leukocytes. Technical Bulletin #387, St. Louis, MO.; 1986.

  53. Sigma Chemical Co. Leukocyte alkaline phosphatase. Technical Bulletin #86, St. Louis, MO.; 1990.

  54. Sikorski, E. E.; Hallmann, R.; Berg, E. L., et al. The Peyer's patch high endothelial receptor for lymphocytes, the mucosal vascular addressin, is induced on a murine endothelial cell line by tumor necrosis factor-α and IL-1. J. Immunol. 151:5239–5250; 1993.

    PubMed  CAS  Google Scholar 

  55. Smith, C.; Kellam Henon, B. Histological and histochemical study of high endothelium of post-capillary veins of the lymph node. Anat. Rec. 135:207–214; 1959.

    Article  PubMed  CAS  Google Scholar 

  56. Smith, W. C. Endothelial adhesion molecules and their role in inflammation. Can. J. Physiol. Pharmacol. 71:76–87; 1993.

    PubMed  CAS  Google Scholar 

  57. Spertini, O.; Luscinskas, F. W.; Kansas, G. S., et al. Leukocyte adhesion molecule-1 (LAM-1, L-Selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J. Immunol. 147:2565–2573; 1991.

    PubMed  CAS  Google Scholar 

  58. Streeter, P. R.; Rouse, B. T. N.; Butcher, E. C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107:1853–1862; 1988.

    Article  PubMed  CAS  Google Scholar 

  59. Thornhill, M. H.; Kyan-Aung, U.; Lee, T. H., et al. T cells and neutrophils exhibit differential adhesion to cytokine-stimulated endothelial cells. Immunology 69:287–292; 1990.

    PubMed  CAS  Google Scholar 

  60. Turner, R. R.; Beckstead, J. H.; Warnke, R. A., et al. Endothelial cell phenotypic diversity: in situ demonstration of immunologic and enzymatic heterogeneity that correlates with specific morphologic subtypes. Am. J. Pathol. 87:569–575; 1987.

    CAS  Google Scholar 

  61. Vernon, R. B.; Angello, J. C.; Iruela-Arispe, M. L., et al. Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab. Invest. 66:536–547; 1992.

    PubMed  CAS  Google Scholar 

  62. von Andrian, U. H.; Chambers, J. D.; McEvoy, L. M., et al. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta2 integrins in vivo. Proc. Natl. Acad. Sci. USA 88:7538–7542; 1991.

    Article  Google Scholar 

  63. Vonderheide, R. H.; Springer, T. A. Lymphocyte adhesion through very late antigen 4: evidence for a novel binding site in the alternatively spliced domain of vascular cell adhesion molecule 1 and an additional alpha 4 integrin counter-receptor on stimulated endothelium. J. Exp. Med. 175:1433–1442; 1992.

    Article  PubMed  CAS  Google Scholar 

  64. Wenk, E. J.; Orlic, D.; Reith, E. J., et al. The ultrastructure of mouse lymph node venules and the passage of lymphocytes across their walls. J. Ultrastruct. Res. 47:214–241; 1974.

    Article  PubMed  CAS  Google Scholar 

  65. Weston, S. A.; Parish, C. R. New fluorescent dyes for lymphocyte migration studies. J. Immunol. Methods 133:87; 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Weston, S. A.; Parish, C. R. Calcein: a novel marker for lymphocytes which enter lymph nodes. Cytometry 13:739–749; 1992.

    Article  PubMed  CAS  Google Scholar 

  67. Woodruff, J. J.; Clarke, L. M.; Chin, Y. H. Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes. Ann. Rev. Immunol. 5:201–222; 1987.

    Article  CAS  Google Scholar 

  68. Yoshida, Y.; Hilborn, V.; Hassett, C., et al. Characterization of mouse fetal lung cells cultured on a pigskin substrate. In Vitro 6:433–445; 1980.

    Article  Google Scholar 

  69. Zoellner, H.; Cebon, J.; Layton, J. E., et al. Contrasting effects of interleukin-4 on colony-stimulating factor and interleukin-6 synthesis by vascular endothelial cells. Lymphokine Cytokine Res. 12:93–99; 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook-Milis, J.M., Gallagher, J.S. & Feldbush, T.L. Isolation and characterization of high endothelial cell lines derived from mouse lymph nodes. In Vitro Cell.Dev.Biol.-Animal 32, 167–177 (1996). https://doi.org/10.1007/BF02723682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02723682

Key words

Navigation