Skip to main content
Log in

The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy

  • Original Articles
  • Published:
Virchows Archiv B

Summary

The alterations of hepatic peroxisomes and their enzymes during aging were investigated in male rats. Peroxisomes in the livers of young (2 months) and old (39 months) male Wistar rats were analyzed by morphometry and quantitative immunocytochemistry, as well as by immunoblotting of highly purified peroxisomal fractions. Immunoblots showed that catalase and acyl-CoA oxidase were decreased in peroxisomes of old animals but the trifunctional enzyme, thiolase, and urate oxidase were increased. The morphometrical analysis revealed a heterogeneous distribution of peroxisomes in the liver lobule of the old animals, with a significant elevation of peroxisomal volume density in pericentral over periportal hepatocytes, in contrast to the uniform pattern in the young rats. Furthermore, age-related lobular gradients were also observed by quantitative immunocytochemistry in the peroxisomal concentrations of trifunctional enzyme (central > portal) and, inversely, for catalase (portal > central). Whereas acyl-CoA oxidase was diminished across the liver lobule, the enzyme 3-ketoacyl-CoA thiolase was elevated. These observations show that peroxisomes are significantly altered in aged animals and suggest that these alterations may contribute to the disturbance of lipid metabolism in aged animals. Moreover, the diminution in catalase and the elevation of urate oxidase could contribute to the oxidative stress which is considered to be of fundamental importance in the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Rad Res Comm 7:121–128

    Article  CAS  Google Scholar 

  • Ames BN, Cathcart R, Schwiers E, Hochstein P (1981) Uric acid provides an antioxidant defense in humans against oxidant and radical-caused aging and cancer: a Hypothesis. Proc Natl Acad Sci USA 78:6858–6862

    Article  PubMed  CAS  Google Scholar 

  • Angermüller S (1989) Peroxisomal oxidases: cytochemical localization and biological relevance. Progr Histochem Cytochem 20:1–65

    Google Scholar 

  • Angermüller S, Bruder G, Völkl A, Wesch H, Fahimi HD (1987) Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur J Cell Biol 45:137–144

    PubMed  Google Scholar 

  • Appelkvist EL, Reinhart M, Fischer R, Billheimer J, Dallner G (1990) Presence of individual enzymes of cholesterol biosynthesis in rat liver peroxisomes. Arch Biochem Biophys 282:318–325

    Article  PubMed  CAS  Google Scholar 

  • Baudhuin P, Beaufay H, de Duve C (1965) Combined biochemical and morphological study of particulate fractions from rat liver. J Cell Biol 26:219–243

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Fahimi HD (1985) Automatic determination of labeling density in protein A-gold immunocytochemical preparations using an image analyzer. Histochemistry 82:99–100

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Fahimi HD (1987) Application of automatic image analysis for morphometric studies of peroxisomes stained cytochemically for catalase. II Light-microscopic application. Cell Tissue Res 247:179–185

    Article  PubMed  CAS  Google Scholar 

  • Beier K, Fahimi HD (1992) Application of automatic image analysis for quantitative morphological studies of peroxisomes in rat liver in conjunction with cytochemical staining with 3-3′diaminobenzidine and immunocytochemistry. Microsc Res Technique 21:271–282

    Article  CAS  Google Scholar 

  • Beier K, Völkl A, Hashimoto T, Fahimi HD (1988) Selective induction of peroxisomal enzymes by the hypolipidemic drug bezafibrate. Detection of modulations by automatic image analysis in conjunction with immunoelectron microscopy and immunoblotting. Eur J Cell Biol 46:383–393

    PubMed  CAS  Google Scholar 

  • Cand F, Verdetti J (1989) Superoxide dismutase, glutathione peroxidase, catalase, and lipid peroxidation in the major organs of the aging rat. Free Rad Biol Med 7:59–63

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chandoga, Balaz V, Balazova H (1984) Changes in the activities of peroxisomal, lysosomal, and mitochondrial enzymes of the rat in ageing. Bratisl lek Listy 81:176–181

    PubMed  CAS  Google Scholar 

  • Chang LY, Slot JW, Geuze HJ, Crapo JD (1988) Molecular immunocytochemistry of the CuZn Superoxide dismutase in rat hepatocytes. J Cell Biol 107:2169–2179

    Article  PubMed  CAS  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    PubMed  Google Scholar 

  • Dhaunsi GS, Gulati S, Singh AK, Orak JK, Asayama K, Singh I (1992) Demonstration of Cu-Zn Superoxide dismutase in rat liver peroxisomes. J Biol Chem 267:6870–6873

    PubMed  CAS  Google Scholar 

  • Fahimi HD (1969) Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes). J Cell Biol 43:275–288

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Reinicke A, Sujatta M, Yokota S, Özel M, Hartig F, Stegmeier K (1982) The shortand long-term effects of bezafibrate in the rat. Ann NY Acad Sci 386:111–135

    Article  PubMed  CAS  Google Scholar 

  • Fahimi HD, Sies H (1987) Peroxisomes in biology and medicine. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Fraga C, Shigenaga M, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging: 8-Hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci 87:4533–4537

    Article  PubMed  CAS  Google Scholar 

  • Gensler HL, Hall JD, Bernstein H (1987) The DNA damage hypothesis of aging: Importance of oxidative damage. In: Rothstein M, Adler WH, Finch CE, Cristofalo VJ, Florini JR, Martin GM (eds) Review of biological research in aging. A R Liss, New York, pp 451–465

    Google Scholar 

  • Haining JL, Legan JS (1973) Catalase turnover in rat liver and kidney as a function of age. Exp Geront 8:85–91

    Article  CAS  Google Scholar 

  • Hajra AK, Bishop JE (1982) Glycerolipid biosynthesis in peroxisomes via the acyl dihydroxyacetone phosphate pathway. Ann NY Acad Sci 386:170–181

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    PubMed  CAS  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci 78:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T (1987) Comparison of enzymes of lipid β-oxidation in peroxisomes and mitochondria. In: HD Fahimi, H Sies (eds) Peroxisomes in biology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 97–104

    Google Scholar 

  • Hegner D (1980) Age-dependence of molecular and functional changes in biological membrane properties. Mech Ageing Dev 14:101–118

    Article  PubMed  CAS  Google Scholar 

  • Hiltunen JK (1991) Peroxisomes and β-oxidation of long chain unsaturated carboxylic acids. Scand J Clin Lab Invest [Suppl 204] 51:33–46

    Article  CAS  Google Scholar 

  • Inestrosa NC, Bronfman M, Leighton F (1979) Detection of peroxisomal acyl-coenzyme A oxidase activity. Biochem J 182:779–788

    PubMed  CAS  Google Scholar 

  • Jedlitschky G, Huber M, Völkl A, Müller M, Leier I, Müller J, Lehmann WD, Fahimi HD, Keppler D (1991) Peroxisomal degradation of leukotrienes by β-oxidation from the omega-end. J Biol Chem 266:24763–24772

    PubMed  CAS  Google Scholar 

  • Keller GA, Barton MC, Shapiro DJ, Singer SJ (1985) 3-Hydroxy-3-methylglutaryl-coenzyme A reductase is present in peroxisomes in normal rat liver cells. Proc Natl Acad Sci USA 82:770–774

    Article  PubMed  CAS  Google Scholar 

  • Keller GA, Warner TG, Steimer KS, Hallewall RA (1991) Cu, Zn Superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci USA 88:7381–7385

    Article  PubMed  CAS  Google Scholar 

  • Kessler AR, Kessler B, Yehuda S (1985) Changes in the cholesterol level, cholesterol-to-phospholipid mole ratio, and membrane lipid microviscosity in rat brain induced by age and a plant oil mixture. Biochem Pharmacol 34:1120–1121

    Article  PubMed  CAS  Google Scholar 

  • Loud AV (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37:27–46

    Article  PubMed  CAS  Google Scholar 

  • Matsuo M, Gomi F, Dooley MM (1992) Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats. Mech Ageing Dev 64:273–292

    Article  PubMed  CAS  Google Scholar 

  • Meihuizen SP, Blansjaar N (1980) Stereological analysis of liver parenchymal cells from young and old rats. Mech Ageing Dev 13:111–118

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S, Furuta S, Osumi T, Hashimoto T (1980) Turnover of enzymes of peroxisomal β-oxidation in rat liver. Biochim Biophys Acta 630:367–374

    PubMed  CAS  Google Scholar 

  • Osmundsen H, Bremer J, Pedersen JI (1991) Metabolic aspects of peroxisomal β-oxidation. Biochim Biophys Acta 1085:141–158

    PubMed  CAS  Google Scholar 

  • Palosaari PM, Hiltunen JK (1990) Peroxisomal bifunctional protein from rat liver is a trifunctional enzyme possessing 2-enoylCoa hydratase, ydroxyacyl-Coa dehydrogenase, and delta3, delta2-enoyl-CoA isomerase activities. J Biol Chem 265:2446–2449

    PubMed  CAS  Google Scholar 

  • Pieri C, Zs-Nagy I, Mazzufferi G, Giuli C (1975) The aging of rat liver as revealed by electron microscopic morphometry-I. Basic parameters. Exp Geront 10:291–304

    Article  CAS  Google Scholar 

  • Rao G, Xia E, Richardson A (1990) Effect of age on the expression of antioxidant enzymes in male Fischer F344 rats. Mech Ageing Dev 53:49–60

    Article  PubMed  CAS  Google Scholar 

  • Roth JA (1982) The protein A-gold technique a qualitative and quantitative approach for antigen localization on thin sections. In: GR Bullock and P Petrusz (eds) Techniques in immunocyto-chemistry. Academic Press, New York, pp 108–133

    Google Scholar 

  • Schepers L, Casteels M, Vamecq J, Parmentier G, Van Veldhoven PP, Mannaerts GP (1988) β-oxidation of the carboxyl side chain of prostaglandin E2 in rat liver peroxisomes and mitochondria. J Biol Chem 263:2724–2731

    PubMed  CAS  Google Scholar 

  • Schmucker DL (1990) Hepatocyte fine structure during maturation and senescence. J Electron Microsc Technique 14:106–125

    Article  CAS  Google Scholar 

  • Schmucker DL, Mooney JS, Jones AL (1978) Stereological analysis of hepatic fine structure in the Fischer 344 rat. J Cell Biol 78:319–337

    Article  PubMed  CAS  Google Scholar 

  • Semsei I, Rao G, Richardson A (1989) Changes in the expression of Superoxide dismutase and catalase as a function of age and dietary restriction. Biochem Biophys Res Comm 164:620–625

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky M (1987) Patterns of lipid changes in membranes of the aged brain. Gerontology 33:149–154

    PubMed  CAS  Google Scholar 

  • Sohal RS, Allen RG (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522

    Article  PubMed  CAS  Google Scholar 

  • Sonntag WE (1987) Hormone secretion and action in aging animals and man. In: Rothstein M, Adler WH, Finch CE, Cristofalo VJ, Florini JR, Martin GM (eds) Review of biological research in aging. A R Liss, New York, pp 299–335

    Google Scholar 

  • Svoboda D, Azarnoff D, Reddy J (1969) Microbodies in experimentally altered cells. II The relationship of microbody proliferation to endocrine glands. J Cell Biol 40:735–746

    Article  Google Scholar 

  • Thompson SL, Krisans SK (1990) Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoA. J Biol Chem 265:5731–5735

    PubMed  CAS  Google Scholar 

  • Usuda N, Reddy MK, Hashimoto T, Rao MS, Reddy JK (1988) Tissue specifity and species differences in the distribution of urate oxidase in peroxisomes. Lab Invest 58:100–111

    PubMed  CAS  Google Scholar 

  • Van den Bosch H, Schutgens RHB, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  • Völkl A, Baumgart E, Fahimi HD (1988) Localization of urate oxidase in the crystalline cores of rat liver peroxisomes by immunocytochemistry and immunoblotting. J Histochem Cytochem 36:329–336

    PubMed  Google Scholar 

  • Völkl A, Fahimi HD (1985) Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem 149:257–265

    Article  PubMed  Google Scholar 

  • Wiener J, Loud AV, Kimberg DV, Spiro D (1968) A quantitative description of cortisone-induced alterations in the ultrastructure of rat liver parenchymal cells. J Cell Biol 37:47s61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, K., Völkl, A. & Fahimi, H.D. The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy. Virchows Archiv B Cell Pathol 63, 139–146 (1993). https://doi.org/10.1007/BF02899254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02899254

Key words

Navigation