Skip to main content
Log in

Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Azithromycin (AZM) has been used as an anti-inflammatory agent in the treatment of cystic fibrosis (CF), particularly those with chronic infection with P. aeruginosa (PA). To investigate mechanisms associated with the beneficial effects of AZM in CF, we examined bacterial load, cytokine levels, and clearance of inflammatory cells in CF mice infected with mucoid PA and treated with AZM.

Methods

Gut-corrected Cftr tm1Unc-TgN(FABPCFTR)#Jaw CF mice infected with an alginate-overproducing PA CF-isolate were treated with AZM or saline and examined for survival of animals, lung bacterial load, inflammation, cytokine levels, and apoptotic cells up to 5 days post-infection.

Results

Administration of AZM (20 mg/kg) 24 h after the infection improved 5-day survival to 95% compared with treatment with saline (56%). AZM administration was associated with significant reductions in bacterial load, decreased lung inflammation, and increased levels of IFN-γ. AZM increased macrophage clearance of apoptotic neutrophils from the lung.

Conclusion

Azithromycin enhances bacterial clearance and reduces lung inflammation by improving innate immune defense mechanisms in CF mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

PA:

P. aeruginosa

MPA:

Mucoid P. aeruginosa

AZM:

Azithromycin

KC:

Mouse growth-related oncogene-α

MCP-1:

Monocyte chemoattractant protein-1

References

  1. Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol. 1997;24:137–42. discussion 159–61.

    Article  PubMed  CAS  Google Scholar 

  2. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol. 2005;175:7512–8.

    PubMed  CAS  Google Scholar 

  3. Pedersen SS. Lung infection with alginate-producing, mucoid Pseudomonas aeruginosa in cystic fibrosis. APMIS Suppl. 1992;28:1–79.

    PubMed  CAS  Google Scholar 

  4. Pier GB, Coleman F, Grout M, Franklin M, Ohman DE. Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun. 2001;69:1895–901.

    Article  PubMed  CAS  Google Scholar 

  5. Hoiby N. Antibiotic therapy for chronic infection of pseudomonas in the lung. Annu Rev Med. 1993;44:1–10.

    Article  PubMed  CAS  Google Scholar 

  6. Bianchi SM, Prince LR, McPhillips K, Allen L, Marriott HM, Taylor GW, et al. Impairment of apoptotic cell engulfment by pyocyanin, a toxic metabolite of Pseudomonas aeruginosa. Am J Respir Crit Care Med. 2008;177:35–43.

    Article  PubMed  CAS  Google Scholar 

  7. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen–host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171:1209–23.

    Article  PubMed  Google Scholar 

  8. Shinkai M, Rubin BK. Macrolides and airway inflammation in children. Paediatr Respir Rev. 2005;6:227–35.

    Article  PubMed  Google Scholar 

  9. Yanagihara K, Tomono K, Sawai T, Kuroki M, Kaneko Y, Ohno H, et al. Combination therapy for chronic Pseudomonas aeruginosa respiratory infection associated with biofilm formation. J Antimicrob Chemother. 2000;46:69–72.

    Article  PubMed  CAS  Google Scholar 

  10. Baumann U, King M, App EM, Tai S, Konig A, Fischer JJ, et al. Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J. 2004;11:151–5.

    PubMed  Google Scholar 

  11. Hansen CR, Pressler T, Koch C, Hoiby N. Long-term azithromycin treatment of cystic fibrosis patients with chronic Pseudomonas aeruginosa infection; an observational cohort study. J Cyst Fibros. 2005;4:35–40.

    Article  PubMed  CAS  Google Scholar 

  12. Pirzada OM, McGaw J, Taylor CJ, Everard ML. Improved lung function and body mass index associated with long-term use of macrolide antibiotics. J Cyst Fibros. 2003;2:69–71.

    Article  PubMed  CAS  Google Scholar 

  13. Saiman L, Marshall BC, Mayer-Hamblett N, Burns JL, Quittner AL, Cibene DA, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290:1749–56.

    Article  PubMed  CAS  Google Scholar 

  14. Shinkai M, Lopez-Boado YS, Rubin BK. Clarithromycin has an immunomodulatory effect on ERK-mediated inflammation induced by Pseudomonas aeruginosa flagellin. J Antimicrob Chemother. 2007;59:1096–101.

    Article  PubMed  CAS  Google Scholar 

  15. Cigana C, Assael BM, Melotti P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother. 2007;51:975–81.

    Article  PubMed  CAS  Google Scholar 

  16. Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN. Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. Eur Respir J. 2006;28:486–95.

    Article  PubMed  CAS  Google Scholar 

  17. Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45:1930–3.

    Article  PubMed  CAS  Google Scholar 

  18. Nalca Y, Jansch L, Bredenbruch F, Geffers R, Buer J, Haussler S. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob Agents Chemother. 2006;50:1680–8.

    Article  PubMed  CAS  Google Scholar 

  19. Oishi K, Sonoda F, Kobayashi S, Iwagaki A, Nagatake T, Matsushima K, et al. Role of interleukin-8 (IL-8) and an inhibitory effect of erythromycin on IL-8 release in the airways of patients with chronic airway diseases. Infect Immun. 1994;62:4145–52.

    PubMed  CAS  Google Scholar 

  20. Tsai WC, Rodriguez ML, Young KS, Deng JC, Thannickal VJ, Tateda K, et al. Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection. Am J Respir Crit Care Med. 2004;170:1331–9.

    Article  PubMed  Google Scholar 

  21. Yanagihara K, Tomono K, Kuroki M, Kaneko Y, Sawai T, Ohno H, et al. Intrapulmonary concentrations of inflammatory cytokines in a mouse model of chronic respiratory infection caused by Pseudomonas aeruginosa. Clin Exp Immunol. 2000;122:67–71.

    Article  PubMed  CAS  Google Scholar 

  22. Yanagihara K, Tomono K, Sawai T, Hirakata Y, Kadota J, Koga H, et al. Effect of clarithromycin on lymphocytes in chronic respiratory Pseudomonas aeruginosa infection. Am J Respir Crit Care Med. 1997;155:337–42.

    PubMed  CAS  Google Scholar 

  23. Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, et al. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res. 2006;7:134.

    Article  PubMed  Google Scholar 

  24. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, et al. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(−/−) mice. Antimicrob Agents Chemother. 2007;51:3677–87.

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann N, Rasmussen TB, Jensen PO, Stub C, Hentzer M, Molin S, et al. Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun. 2005;73:2504–14.

    Article  PubMed  CAS  Google Scholar 

  26. Kashef N, Behzdian-Jejad Q, Najar-Peerayen S, Mousavi-Hosseini K, Moazeni M, Rezvan H, et al. Preliminary investigation on the isolation of alginate produced by mucoid Pseudomonas aeruginosa. Ann Microbiol. 2005;55:279–82.

    Google Scholar 

  27. Pedersen SS, Espersen F, Hoiby N, Shand GH. Purification, characterization, and immunological cross-reactivity of alginates produced by mucoid Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol. 1989;27:691–9.

    PubMed  CAS  Google Scholar 

  28. Tsai WC, Strieter RM, Wilkowski JM, Bucknell KA, Burdick MD, Lira SA, et al. Lung-specific transgenic expression of KC enhances resistance to Klebsiella pneumoniae in mice. J Immunol. 1998;161:2435–40.

    PubMed  CAS  Google Scholar 

  29. Newcomb DC, Sajjan US, Nagarkar DR, Wang Q, Nanua S, Zhou Y, et al. Human rhinovirus 1B exposure induces PI 3-kinase-dependent airway inflammation in mice. Am J Respir Crit Care Med. 2008;177:1111–21.

    Article  PubMed  CAS  Google Scholar 

  30. Sajjan U, Thanassoulis G, Cherapanov V, Lu A, Sjolin C, Steer B, et al. Enhanced susceptibility to pulmonary infection with Burkholderia cepacia in Cftr(−/−) mice. Infect Immun. 2001;69:5138–50.

    Article  PubMed  CAS  Google Scholar 

  31. Gao JL, Lee EJ, Murphy PM. Impaired antibacterial host defense in mice lacking the N-formylpeptide receptor. J Exp Med. 1999;189:657–62.

    Article  PubMed  CAS  Google Scholar 

  32. O’Toole GA, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998;28:449–61.

    Article  PubMed  Google Scholar 

  33. McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, et al. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. J Immunol. 2005;175:404–12.

    PubMed  CAS  Google Scholar 

  34. Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol. 2007;292:L519–28.

    Article  PubMed  CAS  Google Scholar 

  35. Vanaudenaerde BM, Wuyts WA, Geudens N, Dupont LJ, Schoofs K, Smeets S, et al. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from human airway smooth muscle cells. Am J Transplant. 2007;7:76–82.

    Article  PubMed  CAS  Google Scholar 

  36. Cigana C, Nicolis E, Pasetto M, Assael BM, Melotti P. Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells. Biochem Biophys Res Commun. 2006;350:977–82.

    Article  PubMed  CAS  Google Scholar 

  37. Moser C, Jensen PO, Kobayashi O, Hougen HP, Song Z, Rygaard J, et al. Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol. 2002;127:206–13.

    Article  PubMed  CAS  Google Scholar 

  38. Moser C, Kjaergaard S, Pressler T, Kharazmi A, Koch C, Hoiby N. The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. Apmis. 2000;108:329–35.

    Article  PubMed  CAS  Google Scholar 

  39. Lucey DR, Clerici M, Shearer GM. Type 1 and type 2 cytokine dysregulation in human infectious, neoplastic, and inflammatory diseases. Clin Microbiol Rev. 1996;9:532–62.

    PubMed  CAS  Google Scholar 

  40. Romagnani S. The Th1/Th2 paradigm. Immunol Today. 1997;18:263–6.

    Article  PubMed  CAS  Google Scholar 

  41. Sugiyama K, Shirai R, Mukae H, Ishimoto H, Nagata T, Sakamoto N, et al. Differing effects of clarithromycin and azithromycin on cytokine production by murine dendritic cells. Clin Exp Immunol. 2007;147:540–6.

    Article  PubMed  CAS  Google Scholar 

  42. Knapp S, Leemans JC, Florquin S, Branger J, Maris NA, Pater J, et al. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med. 2003;167:171–9.

    Article  PubMed  Google Scholar 

  43. Vandivier RW, Fadok VA, Hoffmann PR, Bratton DL, Penvari C, Brown KK, et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest. 2002;109:661–70.

    PubMed  CAS  Google Scholar 

  44. Vandivier RW, Fadok VA, Ogden CA, Hoffmann PR, Brain JD, Accurso FJ, et al. Impaired clearance of apoptotic cells from cystic fibrosis airways. Chest. 2002;121:89S.

    Article  PubMed  Google Scholar 

  45. Hodge S, Hodge G, Jersmann H, Matthews G, Ahern J, Holmes M, et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;178:139–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. N. Hoffmann, University of Copenhagen for providing us MPA isolate used in this study. We thank Dr. van Heeckeren, Case Western Reserve University, Cleaveland, Ohio for providing Gut-corrected CF mice. This work was supported by the Cystic Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umadevi Sajjan.

Additional information

Responsible Editor: M. Parnham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, W.C., Hershenson, M.B., Zhou, Y. et al. Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflamm. Res. 58, 491–501 (2009). https://doi.org/10.1007/s00011-009-0015-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0015-9

Keywords

Navigation